2022年初中数学七年级上册第二章《有理数》教案 .pdf
《2022年初中数学七年级上册第二章《有理数》教案 .pdf》由会员分享,可在线阅读,更多相关《2022年初中数学七年级上册第二章《有理数》教案 .pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、七年级第二章第一节有理数课型:新授课教学目标:1.理解正负数的概念,会判断一个数是正数还是负数.(重点)2.会用正负数表示具有相反意义的量;有理数的分类及其分类的标准(难点)3.培养学生树立分类讨论的思想教法和学法指导:本节应用“启迪诱导自主探究”教学模式.教师在教学过程中起到引导释疑的作用:引导学生观察、思考、分析、讨论、形成结论,并让学生在应用中体会所得知识,学会应用所学知识解决问题的方法.课前准备:准备课件,学生课前进行相关预习工作.教学过程:一、情景导入明确目标:大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学
2、里学过的数可以分为三类:整数、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的为了表示一个人、两只手、,,我们用到整数1,2,,为了表示“没有东西”、“没有羊”、,,我们要用到0瓦 罐没有东西了有了0 二人分一只西瓜,用数如何表示半只西瓜有了分数货币购物,用数如何表示10 元 5 角 3 分有了小数用小学学过的数能表示下列数吗?但在实际生活中,还有许多量不能用上述所说的整数,零或分数、小数表示1 分和扣 1 分,如果只用小学学过的数,都记作1 分,就不能把它们区别清楚它们是具有相反意义的两个量现实生活中,像这样的相反意义的量还有很多例如,珠穆朗玛峰高于海平面8848 米,吐鲁番盆地
3、低于海平面155 米,“高于”和“低于”其意义是相反的零上5oC 零下5oC 活动的实际效果:本环节利用问题情境的设置,紧紧扣住了学生的心弦,学生带着需要解决的问题来进行学习,极大的调动了学生学习的自觉性和积极性,有效的提高了知识的可接受程度.同学们能举例子吗?活动的实际效果:学生从身边的生活中找带有“”号的数,他们很感兴趣,积极发言,当他们举出一些例子以后就会发现:零上为正的话,零下就为负;盈利为正,亏损就为负;海平面以上为正,海平面以下就为负,从而意识到“正”“负”是表示相反意义的量,这样学生认识到可以用正负数表示生活中具有相反意义的量学生回答后,教师提出:怎样区别相反意义的量才好呢?二.
4、自主学习合作探究探究活动 1.用正负数表示具有相反意义的量根据课本第23 页计算某班两个代表队举行知识竞赛得分情况,创设一个便于学生动手、动脑、主动探索的求知情境,然后进行小组合作讨论.活动的实际效果:在学生的交流过程中,老师进行监控指导,确保每个小组讨论的质量并沿着正确的思考方向发展.每个小组的同学都能积极说出自己的想法,组内语言表达好的同学给语言表达稍差的同学作了良好的示范,这样起到了组内帮助的作用,各个小组的学生发表了他们的不同表达方法后,大家一致总结出:用带“”号的数表示比0 分低的得分,用带“+”号的数表示比0 分高的得分是最方便简洁的方法.在此基础上给同学们讲授了“1”和“+1”的
5、读法.学生学习了“+”、“”表示方法后,完成表格,虽然这里包含了有理数的运算,但学生根据生活经验可以完成,此处也为了以后的运算作了铺垫.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848 米,记作+8848 米;低于海平面155 米,记作 155 米;活动的实际效果:通过对生活实际中的一些量的表示,体会正负数是两个具有相反意义的量;教师讲解:强调,数0 既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量并指出,正数,负数的“+”“”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号例(1)某人转动转盘,如
6、果用+5 表示沿逆时针方向转了5 圈,那么沿顺时针方向转了12 圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 克记作+0.02,那么 0.03 克表示什么?即时练习1:任意写出5 个正数与5 个负数,并分别把它们填入相应的大括号里:正数集合:,,负数集合:,(2)教材第 25 页随堂练习第1 题.(3)教材第 26 页知识技能第2 题.活动的实际效果:本环节教师和学生一起完成例1,对学生理解正负数是表示相反意义的量以及解题格式起到示范的作用.随后展开竞赛,完成随堂练习第1 题、知识技能第2 题,前一环节的学习是从实际上升到理论,这一次的练习是由理论到实际应用,后者比
7、前者在理解上来的更为深刻些探究活动2:新的整数、分数概念文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W
8、9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8
9、X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L
10、5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W
11、8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9
12、J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D
13、6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5文档编码:CG7D6L5C3I3 HY3G10W8W9I3 ZJ2F7B9J8X5引进负数后,数的范围扩大了过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数,探究活动3:有理数概念有理数的分类1.有理数概
14、念整数和分数统称为有理数,2.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,并指出,在有理数范围内,正数和零统称为非负数并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类活动的实际效果:将所学的数分类上,学生有很多不同的分法,意见分歧比较大,但只要是合理,教师都给予了肯定,因为学生不可能得出有理数这一概念,这时教师讲解有理数的概
15、念,并进行有理数的分类,让学生领会数学的分类思想,对有理数有了整体的认识.学生独立完成随堂练习后两题,进一步巩固对有理数的掌握.即时练习 2:1.教材第 25 页随堂练习第2 题2.教材第 26 页随堂练习第3 题三总结知识拓展提高1.通过本节课的学习你获得了那些知识?教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?活动的实际效果:每位同学在组内都能积极发言,认真回顾本节课所学知识,学生独立总结回答,既提高了学生的归纳总结能力又提高了学生的语言表达能力.达标检测:1、在 2;1/2;3.5;11 中,正数是;负数是.2、+1350 米表示高于海平面1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有理数 2022年初中数学七年级上册第二章有理数教案 2022 年初 数学 年级 上册 第二 教案
限制150内