2.4.2 圆的一般方程 导学案-人教A版高中数学选择性必修第一册.docx
《2.4.2 圆的一般方程 导学案-人教A版高中数学选择性必修第一册.docx》由会员分享,可在线阅读,更多相关《2.4.2 圆的一般方程 导学案-人教A版高中数学选择性必修第一册.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.4.2圆的一般方程1.理解圆的一般方程及其特点.2.掌握圆的一般方程和标准方程的互化.3.会求圆的一般方程以及与圆有关的简单的轨迹方程问题重点: 掌握圆的一般方程并会求圆的一般方程难点:与圆有关的简单的轨迹方程问题 一、圆的一般方程(1)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F=0表示以(-D2,-E2)为圆心,12D2+E2-4F为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得(x+D2)2+(y+E2)2=D2+E2-4F4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D2,-E2)(3)当D2+E2-4F0);(3)圆心在x
2、轴上的圆的方程,x2+y2+Dx+F=0(D2-4F0);(4)圆心在x轴上且过原点的圆的方程:x2+y2+Dx=0(D0);(5)圆心在y轴上且过原点的圆的方程:x2+y2+Ey=0(E0).二、由圆的一般方程判断点与圆的位置关系及与圆有关的轨迹问题1.已知点M(x0,y0)和圆的方程x2+y2+Dx+Ey+F=0(D2+E2-4F0).点M在圆外x02+y02+Dx0+Ey0+F0;点M在圆上x02+y02+Dx0+Ey0+F=0;点M在圆内x02+y02+Dx0+Ey0+F0.()一、 情境导学 前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-
3、2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式. 请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.例如,对于方程x2+y2-2x-4y+6=0,对其进行配方,得(x-1)2+(y-2)2=-1,因为任意一点的坐标 (x,y)都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.二、典例解析例1 判断方程x2+y2-4mx+2my+20m-20=
4、0能否表示圆.若能表示圆,求出圆心和半径. 二元二次方程表示圆的判断方法 任何一个圆的方程都可化为x2+y2+Dx+Ey+F=0的形式,但形如x2+y2+Dx+Ey+F=0的方程不一定表示圆.判断它是否表示圆可以有以下两种方法:(1)计算D2+E2-4F,若其值为正,则表示圆;若其值为0,则表示一个点;若其值为负,则不表示任何图形.(2)将该方程配方为(x+D2)2+(y+E2)2=D2+E2-4F4,根据圆的标准方程来判断.跟踪训练1若方程x2+y2+2mx-2y+m2+5m=0表示圆,求:(1)实数m的取值范围;(2)圆心坐标和半径.例2 圆C过点A(1,2),B(3,4),且在x轴上截得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.4.2 圆的一般方程 导学案-人教A版高中数学选择性必修第一册 2.4 一般方程 导学案 人教 高中数学 选择性 必修 一册
限制150内