2022年全国高考甲卷数学(文)试题.docx
《2022年全国高考甲卷数学(文)试题.docx》由会员分享,可在线阅读,更多相关《2022年全国高考甲卷数学(文)试题.docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年全国高考甲卷数学(文)试题学校:_姓名:_班级:_考号:_一、单选题1设集合A=-2,-1,0,1,2,B=x0x0)的图像向左平移2个单位长度后得到曲线C,若C关于y轴对称,则的最小值是()A16B14C13D126从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A15B13C25D237函数y=3x-3-xcosx在区间-2,2的图象大致为()ABCD8当x=1时,函数f(x)=alnx+bx取得最大值-2,则f(2)=()A-1B-12C12D19在长方体ABCD-A1B1C1D1中,已知B1D与平面ABCD和平
2、面AA1B1B所成的角均为30,则()AAB=2ADBAB与平面AB1C1D所成的角为30CAC=CB1DB1D与平面BB1C1C所成的角为4510甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2,侧面积分别为S甲和S乙,体积分别为V甲和V乙若S甲S乙=2,则V甲V乙=()A5B22C10D510411已知椭圆C:x2a2+y2b2=1(ab0)的离心率为13,A1,A2分别为C的左、右顶点,B为C的上顶点若BA1BA2=-1,则C的方程为()Ax218+y216=1Bx29+y28=1Cx23+y22=1Dx22+y2=112已知9m=10,a=10m-11,b=8m-9,则()Aa0
3、bBab0Cba0Db0a二、填空题13已知向量a=(m,3),b=(1,m+1)若ab,则m=_14设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在M上,则M的方程为_15记双曲线C:x2a2-y2b2=1(a0,b0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值_16已知ABC中,点D在边BC上,ADB=120,AD=2,CD=2BD当ACAB取得最小值时,BD=_三、解答题17甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A24020B21
4、030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),PK2k0.1000.0500.010k2.7063.8416.63518记Sn为数列an的前n项和已知2Snn+n=2an+1(1)证明:an是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值19小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,EAB,FBC,GCD,HDA均为正三角形,且它们所
5、在的平面都与平面ABCD垂直(1)证明:EF/平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度)20已知函数f(x)=x3-x,g(x)=x2+a,曲线y=f(x)在点x1,fx1处的切线也是曲线y=g(x)的切线(1)若x1=-1,求a;(2)求a的取值范围21设抛物线C:y2=2px(p0)的焦点为F,点Dp,0,过F的直线交C于M,N两点当直线MD垂直于x轴时,MF=3(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为,当-取得最大值时,求直线AB的方程22在直角坐标系xOy中,曲线C1的参数方程为x=2+t6y=t(t为参数)
6、,曲线C2的参数方程为x=-2+s6y=-s(s为参数)(1)写出C1的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C3的极坐标方程为2cos-sin=0,求C3与C1交点的直角坐标,及C3与C2交点的直角坐标23已知a,b,c均为正数,且a2+b2+4c2=3,证明:(1)a+b+2c3;(2)若b=2c,则1a+1c3参考答案:1A【解析】【分析】根据集合的交集运算即可解出【详解】因为A=-2,-1,0,1,2,B=x0x70%,所以A错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B
7、对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前问卷答题的正确率的极差为95%-60%=35%20%,所以D错.故选:B.3D【解析】【分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出【详解】因为z=1+i,所以iz+3z=i1+i+31-i=2-2i,所以iz+3z=4+4=22故选:D.4B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积V=2+4222=12.故选:B.5C【
8、解析】【分析】先由平移求出曲线C的解析式,再结合对称性得2+3=2+k,kZ,即可求出的最小值.【详解】由题意知:曲线C为y=sinx+2+3=sin(x+2+3),又C关于y轴对称,则2+3=2+k,kZ,解得=13+2k,kZ,又0,故当k=0时,的最小值为13.故选:C.6C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有1,4,2,4,2,6,3,4
9、,4,5,4,66种情况,故概率为615=25.故选:C.7A【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令f(x)=(3x-3-x)cosx,x-2,2,则f(-x)=(3-x-3x)cos(-x)=-(3x-3-x)cosx=-f(x),所以f(x)为奇函数,排除BD;又当x(0,2)时,3x-3-x0,cosx0,所以f(x)0,排除C.故选:A.8B【解析】【分析】根据题意可知f1=-2,f1=0即可解得a,b,再根据fx即可解出【详解】因为函数fx定义域为0,+,所以依题可知,f1=-2,f1=0,而fx=ax-bx2,所以b=-2,a-b=0
10、,即a=-2,b=-2,所以fx=-2x+2x2,因此函数fx在0,1上递增,在1,+上递减,x=1时取最大值,满足题意,即有f2=-1+12=-12故选:B.9D【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出【详解】如图所示:不妨设AB=a,AD=b,AA1=c,依题以及长方体的结构特征可知,B1D与平面ABCD所成角为B1DB,B1D与平面AA1B1B所成角为DB1A,所以sin30=cB1D=bB1D,即b=c,B1D=2c=a2+b2+c2,解得a=2c对于A,AB=a,AD=b,AB=2AD,A错误;对于B,过B作BEAB1于E,易知BE平面AB1C1D,所以AB与平面
11、AB1C1D所成角为BAE,因为tanBAE=ca=22,所以BAE30,B错误;对于C,AC=a2+b2=3c,CB1=b2+c2=2c,ACCB1,C错误;对于D,B1D与平面BB1C1C所成角为DB1C,sinDB1C=CDB1D=a2c=22,而0DB1C1,再利用基本不等式,换底公式可得mlg11,log89m,然后由指数函数的单调性即可解出【详解】由9m=10可得m=log910=lg10lg91,而lg9lg11lg9+lg1122=lg9922lg11lg10,即mlg11,所以a=10m-1110lg11-11=0又lg8lg10lg8+lg1022=lg8022lg10lg
12、9,即log89m,所以b=8m-90b故选:A.13-34#-0.75【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:ab=m+3(m+1)=0,解得m=-34.故答案为:-34.14(x-1)2+(y+1)2=5【解析】【分析】设出点M的坐标,利用(3,0)和(0,1)均在M上,求得圆心及半径,即可得圆的方程.【详解】解:点M在直线2x+y-1=0上,设点M为(a,1-2a),又因为点(3,0)和(0,1)均在M上,点M到两点的距离相等且为半径R,(a-3)2+(1-2a)2=a2+(-2a)2=R,a2-6a+9+4a2-4a+1=5a2,解得a=1,M(1,-1),
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 全国 高考 数学 试题
限制150内