word打印版衡中2020版二轮复习 数学练习题学案含答案和解析第1部分 专题7 第3讲概率、随机变量及其分布列(理).doc
《word打印版衡中2020版二轮复习 数学练习题学案含答案和解析第1部分 专题7 第3讲概率、随机变量及其分布列(理).doc》由会员分享,可在线阅读,更多相关《word打印版衡中2020版二轮复习 数学练习题学案含答案和解析第1部分 专题7 第3讲概率、随机变量及其分布列(理).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一部分专题七第三讲A组1小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(C)A.BCD解析根据题意可以知道,所输入密码所有可能发生的情况如下:M1,M2,M3,M4,M5,I1,I2,I3,I4,I5,N1,N2,N3,N4,N5共15种情况,而正确的情况只有其中一种,所以输入一次密码能够成功开机的概率是.2某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是(A)A0.8 B0
2、.75 C0.6 D0.45解析本题考查条件概率的求法设A“某一天的空气质量为优良”,B“随后一天的空气质量为优良”,则P(B|A)0.8,故选A.3投篮测试中,每人投3次,至少投中2次才能通过测试已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)A0.648 B0.432 C0.36 D0.312解析3次投篮投中2次的概率为P(k2)C0.62(10.6),投中3次的概率为P(k3)0.63,所以通过测试的概率为P(k2)P(k3)C0.62(10.6)0.630.648.4(2017浙江卷,8)已知随机变量i满足P(i1)pi,P(i0)1pi
3、,(i1,2)若0p1p2,则(A)AE(1)E(2),D(1)D(2)BE(1)D(2)CE(1)E(2),D(1)E(2),D(1)D(2)解析由题意可知i(i1,2)服从两点分布,E(1)p1,E(2)p2,D(1)p1(1p1),D(2)p2(1p2)又0p1p2,E(1)E(2)把方差看作函数yx(1x),根据012知,D (1)D(2)故选A.5随机变量的取值为0,1,2.若P(0),E()1,则D()_.解析设P(1)p,则P(2)p,从而由E()01p2(p)1,得p.故D()(01)2(11)2(21)2.6(2019河南信阳二模)如图所示,A,B两点由5条连线并联,它们在单
4、位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为,则P(8)_.解析解法一(直接法):由已知得,的可能取值为7,8,9,10,P(7),P(8),P(9),P(10),的概率分布列为:78910PP(8)P(8)P(9)P(10).解法二(间接法):由已知得,的可能取值为7,8,9,10,故P(8)与P(7)是对立事件,所以P(8)1P(7)1.7(2018天津卷,16)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?
5、(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率解析(1)由已知,甲、乙、丙三个部门的员工人数之比为322,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人(2)随机变量X的所有可能取值为0,1,2,3.P(Xk)(k0,1,2,3)所以随机变量X的分布列为X0123P随机变量X的数学期望E(X)0123.设事件B为“抽取的3人中,睡眠充足的员工有1
6、人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则ABC,且B与C互斥,由(i)知,P(B)P(X2),P(C)P(X1),故P(A)P(BC)P(X2)P(X1).所以,事件A发生的概率为.8甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2
7、)“星队”两轮得分之和X的分布列和数学期望EX.解析(1)记事件A:“甲第一轮猜对”,记事件B:“乙第一轮猜对”,记事件C:“甲第二轮猜对”,记事件D:“乙第二轮猜对”,记事件E:“星队至少猜对3个成语”由题意,EABCDBCDACDABDABC.由事件的独立性与互斥性,得P(E)P(ABCD)P(BCD)P(ACD)P(ABD)P(ABC)P(A)P(B)P(C)P(D)P()P(B)P(C)P(D)P(A)P()P(C)P(D)P(A)P(B)P()P(D)P(A)P(B)P(C)P()2().所以“星队”至少猜对2个成语的概率为.(2)由题意,随机变量X可能的取值为0,1,2,3,4,6
8、.由事件的独立性与互斥性,得P(X0),P(X1)2(),P(X2),P(X3),P(X4)2(),P(X6).可得随机变量X的分布列为X012346P所以数学期望EX012346.B组1(2018全国卷,20)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p,且各件产品是否为不合格品相互独立(1)记20件产品中恰有2件不合格品的概率为f,求f的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- word打印版衡中2020版二轮复习 数学练习题学案含答案和解析第1部分 专题7 第3讲概率、随机变量及其分布列理 word 打印 版衡中 2020 二轮 复习 数学 练习题 学案含 答案 解析 部分
链接地址:https://www.taowenge.com/p-5866372.html
限制150内