高中数学复习专题:导数的概念及运算.docx
《高中数学复习专题:导数的概念及运算.docx》由会员分享,可在线阅读,更多相关《高中数学复习专题:导数的概念及运算.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.1导数的概念及运算最新考纲考情考向分析1.了解导数概念的实际背景2.通过函数图象直观理解导数的几何意义3.能根据导数定义求函数yc(c为常数),yx,yx2,yx3,y,y的导数4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,(理)能求简单的复合函数(仅限于形如f(axb)的复合函数)的导数.导数的概念和运算是高考的必考内容,一般渗透在导数的应用中考查;导数的几何意义常与解析几何中的直线交汇考查;题型为选择题或解答题的第(1)问,低档难度.1导数与导函数的概念(1)一般地,函数yf(x)在xx0处的瞬时变化率是 ,我们称它为函数yf(x)在xx0处的导数,记作f(x0
2、)或,即f(x0) .(2)如果函数yf(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数yf(x)在开区(a,b)间内的导函数记作f(x)或y.2导数的几何意义函数yf(x)在点x0处的导数的几何意义,就是曲线yf(x)在点P(x0,f(x0)处的切线的斜率k,即kf(x0)3基本初等函数的导数公式基本初等函数导函数f(x)c(c为常数)f(x)0f(x)x(Q*)f(x)x1f(x)sin xf(x)cos xf(x)cos xf(x)sin xf(x)exf(x)exf(x)ax(a0,a1)f(x)axln af(x)ln xf(x)f
3、(x)logax(a0,a1)f(x)4.导数的运算法则若f(x),g(x)存在,则有(1)f(x)g(x)f(x)g(x);(2)f(x)g(x)f(x)g(x)f(x)g(x);(3)(g(x)0)5复合函数的导数复合函数yf(g(x)的导数和函数yf(u),ug(x)的导数间的关系为yxyuux,即y对x的导数等于y对u的导数与u对x的导数的乘积知识拓展1奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数2af(x)bg(x)af(x)bg(x)3函数yf(x)的导数f(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f(x)|反映了变化的快慢
4、,|f(x)|越大,曲线在这点处的切线越“陡”题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)f(x0)是函数yf(x)在xx0附近的平均变化率()(2)f(x0)与f(x0)表示的意义相同()(3)与曲线只有一个公共点的直线一定是曲线的切线()(4)函数f(x)sin(x)的导数是f(x)cos x()题组二教材改编2P85A组T5若f(x)xex,则f(1) .答案2e解析f(x)exxex,f(1)2e.3P18A组T6曲线y1在点(1,1)处的切线方程为 答案2xy10解析y,y|x12.故所求切线方程为2xy10.题组三易错自纠4如图所示为函数yf(x),yg(x
5、)的导函数的图象,那么yf(x),yg(x)的图象可能是()答案D解析由yf(x)的图象知,yf(x)在(0,)上单调递减,说明函数yf(x)的切线的斜率在(0,)上也单调递减,故可排除A,C.又由图象知yf(x)与yg(x)的图象在xx0处相交,说明yf(x)与yg(x)的图象在xx0处的切线的斜率相同,故可排除B.故选D.5有一机器人的运动方程为st2(t是时间,s是位移),则该机器人在时刻t2时的瞬时速度为()A. B. C. D.答案D6设函数f(x)的导数为f(x),且f(x)fsin xcos x,则f .答案解析因为f(x)fsin xcos x,所以f(x)fcos xsin
6、x,所以ffcos sin ,即f1,所以f(x)sin xcos x,f(x)cos xsin x.故fcos sin .7已知函数f(x)ax3x1的图象在点(1,f(1)处的切线过点(2,7),则a .答案1解析f(x)3ax21,f(1)3a1,又f(1)a2,切线方程为y(a2)(3a1)(x1),又点(2,7)在切线上,可得a1.题型一导数的计算1f(x)x(2 018ln x),若f(x0)2 019,则x0等于()Ae2 B1Cln 2 De答案B解析f(x)2 018ln xx2 019ln x,故由f(x0)2 019,得2 019ln x02 019,则ln x00,解得
7、x01.2若函数f(x)ax4bx2c满足f(1)2,则f(1)等于()A1 B2C2 D0答案B解析f(x)4ax32bx,f(x)为奇函数且f(1)2,f(1)2.3已知f(x)x22xf(1),则f(0) .答案4解析f(x)2x2f(1),f(1)22f(1),即f(1)2.f(x)2x4,f(0)4.思维升华 导数计算的技巧(1)求导之前,应对函数进行化简,然后求导,减少运算量(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元题型二导数的几何意义命题点1求切线方程典例 (1)曲线f(x)在x0处的切线方程为 答案2xy10解析根据题意可知切点坐标为(0,1),f(x
8、),故切线的斜率kf(0)2,则直线的方程为y(1)2(x0),即2xy10.(2)已知函数f(x)xln x,若直线l过点(0,1),并且与曲线yf(x)相切,则直线l的方程为 答案xy10解析点(0,1)不在曲线f(x)xln x上,设切点为(x0,y0)又f(x)1ln x,直线l的方程为y1(1ln x0)x.由解得x01,y00.直线l的方程为yx1,即xy10.引申探究本例(2)中,若曲线yxln x上点P的切线平行于直线2xy10,则点P的坐标是 答案(e,e)解析y1ln x,令y2,即1ln x2,xe,点P的坐标为(e,e)命题点2求参数的值典例 (1)直线ykx1与曲线y
9、x3axb相切于点A(1,3),则2ab .答案1解析由题意知,yx3axb的导数y3x2a,则由此解得k2,a1,b3,2ab1.(2)已知f(x)ln x,g(x)x2mx(m0),直线l与函数f(x),g(x)的图象都相切,与f(x)图象的切点为(1,f(1),则m .答案2解析f(x),直线l的斜率kf(1)1.又f(1)0,切线l的方程为yx1.g(x)xm,设直线l与g(x)的图象的切点为(x0,y0),则有x0m1,y0x01,y0xmx0,m0,m2.命题点3导数与函数图象典例 (1)已知函数yf(x)的图象是下列四个图象之一,且其导函数yf(x)的图象如图所示,则该函数的图象
10、是()答案B解析由yf(x)的图象是先上升后下降可知,函数yf(x)图象的切线的斜率先增大后减小,故选B.(2)已知yf(x)是可导函数,如图,直线ykx2是曲线yf(x)在x3处的切线,令g(x)xf(x),g(x)是g(x)的导函数,则g(3) .答案0解析由题图可知曲线yf(x)在x3处切线的斜率等于,f(3).g(x)xf(x),g(x)f(x)xf(x),g(3)f(3)3f(3),又由题图可知f(3)1,g(3)130.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点A(x0,f(x0)求斜率k,即求该点处的导数值kf(x0)(2)若求过点P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 复习 专题 导数 概念 运算
限制150内