《求阴影部分面积及周长专题(共11页).doc》由会员分享,可在线阅读,更多相关《求阴影部分面积及周长专题(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上求阴影部分面积专题目标:通过专题复习,加强学生对于图形面积计算的灵活运用。并加深对面积和周长概念的理解和区分。面积求解大致分为以下几类:1、从整体图形中减去局部;2、割补法,将不规则图形通过割补,转化成规则图形。重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。例1.求阴影部分的面积。(单位:厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。(单位:厘米)例3.求图中阴影部分的面积。(单位:厘米)例4.求阴影部分的面积。(单位:厘米)例5.求阴影部分的面积。(单位:厘米)例6.如图:已知小圆半
2、径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。(单位:厘米)例8.求阴影部分的面积。(单位:厘米)例9.求阴影部分的面积。(单位:厘米)例10.求阴影部分的面积。(单位:厘米)例11.求阴影部分的面积。(单位:厘米)例12.求阴影部分的面积。(单位:厘米)例13.求阴影部分的面积。(单位:厘米)例14.求阴影部分的面积。(单位:厘米)例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。例16.求阴影部分的面积。(单位:厘米) 例17.图中圆的半径为5厘米,求阴影部分的面积。(单位:厘米)例18.如图,在边长为6厘米的等边三角形中挖去三个同
3、样的扇形,求阴影部分的周长。例19.正方形边长为2厘米,求阴影部分的面积。例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。例21.图中四个圆的半径都是1厘米,求阴影部分的面积。例22. 如图,正方形边长为8厘米,求阴影部分的面积。例23.图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。如果圆周率取3.1416,那么花瓣图形的的面积是多少平方厘米?例25.如图,四个扇形的半径相等,求阴影部分的面积。(
4、单位:厘米)例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积。例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。例28.求阴影部分的面积。(单位:厘米)例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,CBD=,问:阴影部分甲比乙面积小多少?例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米。求BC的长度。例31.如图是一个正方
5、形和半圆所组成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积。例32.如图,大正方形的边长为6厘米,小正方形的边长为4厘米。求阴影部分的面积。例33.求阴影部分的面积。(单位:厘米)例34.求阴影部分的面积。(单位:厘米)例35.如图,三角形OAB是等腰三角形,OBC是扇形,OB=5厘米,求阴影部分的面积。举一反三巩固练习【专1 】下图中,大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积。【专1-1】.右图中,大小正方形的边长分别是12厘米和10厘米。求阴影部分面积。【专1-2】. 求右图中阴影部分图形的面积及周长。【专2】已知右图阴影部分三角形的面积是5平方米,
6、求圆的面积。【专2-1】已知右图中,圆的直径是2厘米,求阴影部分的面积。【专2-2】求右图中阴影部分图形的面积及周长。【专2-3】 求下图中阴影部分的面积。(单位:厘米)【专3】求下图中阴影部分的面积。【专3-1】求右图中阴影部分的面积。【专3-2】求右图中阴影部分的面积。【专3-3】求下图中阴影部分的面积。专心-专注-专业完整答案例1解:这是最基本的方法: 圆面积减去等腰直角三角形的面积, -21=1.14(平方厘米)例2解:这也是一种最基本的方法用正方形的面积减去 圆的面积。设圆的半径为 r,因为正方形的面积为7平方厘米,所以 =7,所以阴影部分的面积为:7-=7-7=1.505平方厘米例
7、3解:最基本的方法之一。用四个 圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:22-0.86平方厘米。例4解:同上,正方形面积减去圆面积,16-()=16-4 =3.44平方厘米例5解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,()2-16=8-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。例6解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)-()=100.48平方厘米 (注:这和两个圆是否相交、交的情况如何无关)例7解:正方形面积可用(对角线长对角线长2,求)正方形面积为:
8、552=12.5所以阴影面积为:4-12.5=7.125平方厘米 (注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:()=3.14平方厘米例9解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:23=6平方厘米例10解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为21=2平方厘米(注: 8、9、10三题是简单割、补或平移)例11解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求。( -)=3.14=3.6
9、6平方厘米例12. 解:三个部分拼成一个半圆面积()14.13平方厘米例13解: 连对角线后将叶形剪开移到右上面的空白部分,凑成正方形的一半.所以阴影部分面积为:882=32平方厘米例14解:梯形面积减去圆面积,(4+10)4-=28-4=15.44平方厘米 . 例15. 分析: 此题比上面的题有一定难度,这是叶形的一个半.解: 设三角形的直角边长为r,则=12,=6圆面积为:2=3。圆内三角形的面积为122=6,阴影部分面积为:(3-6)=5.13平方厘米例16解: =(116-36)=40=125.6平方厘米例17解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两
10、个小直角三角形AED、BCD面积和。所以阴影部分面积为:552+5102=37.5平方厘米例18解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧,所以圆弧周长为:23.1432=9.42厘米例19解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形。所以面积为:12=2平方厘米 例20解:设小圆半径为r,4=36, r=3,大圆半径为R,=2=18,将阴影部分通过转动移在一起构成半个圆环,所以面积为:(-)2=4.5=14.13平方厘米例21. 解:把中间部分分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为2厘米,所以面积为:22=4平方厘米例22解法一: 将
11、左边上面一块移至右边上面,补上空白,则左边为一三角形,右边一个半圆.阴影部分为一个三角形和一个半圆面积之和. ()2+44=8+16=41.12平方厘米解法二: 补上两个空白为一个完整的圆. 所以阴影部分面积为一个圆减去一个叶形,叶形面积为:()2-44=8-16所以阴影部分的面积为:()-8+16=41.12平方厘米例23解:面积为个圆减去个叶形,叶形面积为:-11=-1所以阴影部分的面积为:4-8(-1)=8平方厘米例24分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切去个圆,这四个部分正好合成个整圆,而正方形中的空白部分合成两个小圆解:阴影部分为大正方形面积与一个小圆面积之和为:
12、44+=19.1416平方厘米例25分析:四个空白部分可以拼成一个以为半径的圆所以阴影部分的面积为梯形面积减去圆的面积,4(4+7)2-=22-4=9.44平方厘米例26解: 将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部分成为三角形ACB面积减去个小圆面积,为: 552-4=12.25-3.14=9.36平方厘米例27解: 因为2=4,所以=2 以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积, -224+4-2 =-1+(-1) =-2=1.14平方厘米例28解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积, 三角形ABD的面积为:552=
13、12.5弓形面积为:2-552=7.125所以阴影面积为:12.5+7.125=19.625平方厘米解法二:右上面空白部分为小正方形面积减去小圆面积,其值为:55-=25-阴影面积为三角形ADC减去空白部分面积,为:1052-(25-)=19.625平方厘米例29. 解: 甲、乙两个部分同补上空白部分的三角形后合成一个扇形BCD,一个成为三角形ABC,此两部分差即为:465-12=3.7平方厘米例30. 解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则40X2-2=28 所以40X-400=56 则X=32.8厘米 例31. 解:连PD、PC转换为两个三角形和两个弓形
14、,两三角形面积为:APD面积+QPC面积=(510+55)=37.5两弓形PC、PD面积为:-55所以阴影部分的面积为:37.5+-25=51.75平方厘米 例32解:三角形DCE的面积为:410=20平方厘米梯形ABCD的面积为:(4+6)4=20平方厘米 从而知道它们面积相等,则三角形ADF面积等于三角形EBF面积,阴影部分可补成圆ABE的面积,其面积为:4=9=28.26平方厘米例33. 解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为 (+)-6=13-6=4.205平方厘米例34解:两个弓形面积为:-342=-6阴影部分为两个半圆面积减去两个弓形面积,结果为+-(
15、-6)=(4+-)+6=6平方厘米 例35解:将两个同样的图形拼在一起成为圆减等腰直角三角形4-552=(-)2=3.5625平方厘米举一反三巩固练习-answer【专1】(5+9)52+992(5+9)52=40.5(平方厘米)【专1-1】(10+12)102+3.1412124(10+12)102=113.04(平方厘米)【专1-2】面积:6(62)3.14(62)(62)2=3.87(平方厘米)周长: 3.1462+6(62)2=21.42(厘米)【专2】2rr2=5 即rr=5 圆的面积错误!未找到引用源。=3.145=15.7(平方厘米)【专2-1】3.14(22)(22)222=1.14(平方厘米)【专2-2】面积:3.146643.14(62)(62)2=14.13 (平方厘米)周长:23.1464+3.1462+6=24.84 (厘米)【专2-3】(6+4)42(443.14444)=16.56(平方厘米)【专3】63332=13.5(平方厘米)【专3-1】8(82)2=16(平方厘米)【专3-2】3.14444442=4.56(平方厘米)【专3-3】552=12.5(平方厘米)
限制150内