全等三角形经典培优题型(含答案~).doc
《全等三角形经典培优题型(含答案~).doc》由会员分享,可在线阅读,更多相关《全等三角形经典培优题型(含答案~).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、|全等三角形的提高拓展训练全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角(3)有公共边的,公共边常是对应边(4)有公共角的,公共角常是对应角(5)有对顶角的,对顶角常是对应角(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角)要想正确地表示两个三角形全等,找出对应的元素是关键全等三角形的判定方法:(1)
2、 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等 (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等(3) 边边边定理(SSS):三边对应相等的两个三角形全等(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础全等三
3、角形证明经典题1 已知:AB=4 ,AC=2 ,D 是 BC 中点,AD 是整数,求 ADADB C2 已知:BC=DE,B= E,C= D,F 是 CD 中点,求证:1=2|ABC DEF213 已知:1=2,CD=DE,EF/AB ,求证:EF=AC4 已知:AD 平分BAC,AC=AB+BD,求证:B=2 CCDB5 已知:AC 平分BAD,CEAB,B+D=180,求证:AE=AD+BEABACDF21E|6 如图,四边形 ABCD 中,ABDC,BE 、CE 分别平分 ABC、BCD,且点 E 在 AD上。求证:BC=AB+DC。7 已知:AB=CD,A=D,求证:B=C8 P 是B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 经典 题型 答案
限制150内