全等三角形培优竞赛训练题.doc
《全等三角形培优竞赛训练题.doc》由会员分享,可在线阅读,更多相关《全等三角形培优竞赛训练题.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、|全等三角形培优竞赛训练题1、已知正方形 ABCD 中,E 为对角线 BD 上一点,过 E 点作 EFBD 交 BC 于 F,连接 DF,G 为 DF 中点,连接 EG,CG(1)直接写出线段 EG 与 CG 的数量关系;(2)将图 1 中BEF 绕 B 点逆时针旋转 45,如图 2 所示,取 DF 中点 G,连接EG,CG 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明 (3)将图 1 中BEF 绕 B 点旋转任意角度,如图 3 所示,再连接相应的线段,问(1)中的结论是否仍然成立? FBA DCEG图 1FBA DCEG图 2FBACE图 3D|2、数学课上,张老师出示了问题:
2、如图 1,四边形 ABCD 是正方形,点 E 是边 BC 的中点 ,且 EF 交正方形外角 的平行线 CF 于点 F,求证:90AEF DCGAE=EF经过思考,小明展示了一种正确的解题思路:取 AB 的中点 M,连接 ME,则AM=EC,易证 ,所以 MEF AEF在此基础上,同学们作了进一步的研究:(1)小颖提出:如图 2,如果把“点 E 是边 BC 的中点”改为“点 E 是边 BC 上(除 B, C 外)的任意一点” ,其它条件不变,那么结论“ AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图 3,点 E 是 BC 的延长
3、线上(除 C 点外)的任意一点,其他条件不变,结论“AE= EF”仍然成立你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由A DFC GEB图 1A DFC GEB图 2A DFC GEB图 3|3、已知 中, 为 边的中点,RtABC 90CD, , AB90EDF,绕 点旋转,它的两边分别交 、 (或它们的延长线)于 、EDF 当 绕 点旋转到 于 时(如图 1) ,易证DEA12FCABCSS 当 绕 点旋转到 不垂直时,在图 2 和图 3 这两种情况下,上述结论是和否成立?若成立,请给予证明;若不成立, 、 、 又有怎样的数量关DEFS C AB系?请写出你的猜想
4、,不需证明AEC F BD图 1 图 3ADFEC BADBCE图 2F|4、在 ABC 中, 2120ABC, , 将 ABC 绕点 顺时针旋转角 (09)得 1 , 交 于点 E, 1分别交、于 DF、 两点(1)如图 1,观察并猜想,在旋转过程中,线段 1与 F有怎样的数量关系?并证明你的结论;ADBECF1 1ADBECF1 1(2)如图 2,当 30时,试判断四边形 1的形状,并说明理由;(3)在(2)的情况下,求 的长|5、如图 9,若 ABC 和 ADE 为等边三角形,M,N 分别 EB,CD 的中点,易证:CD=BE, AMN 是等边三角形(1)当把 ADE 绕 A 点旋转到图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 竞赛 训练
限制150内