蛋白降解技术(PROTAC)药物公司企业风险管理报告_参考.docx
《蛋白降解技术(PROTAC)药物公司企业风险管理报告_参考.docx》由会员分享,可在线阅读,更多相关《蛋白降解技术(PROTAC)药物公司企业风险管理报告_参考.docx(70页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、泓域/蛋白降解技术(PROTAC)药物公司企业风险管理报告蛋白降解技术(PROTAC)药物公司企业风险管理报告目录一、 公司概况3公司合并资产负债表主要数据3公司合并利润表主要数据3二、 产业环境分析4三、 加快产品创新和产业化技术突破5四、 必要性分析7五、 中心趋势测量8六、 变动程度的测定9七、 损失程度的估计11八、 损失频率的估计15九、 影响风险评价的因素18十、 风险评价的概念和特点21十一、 风险度评价法23十二、 风险价值法(VaR)24十三、 确定风险评价标准需要考虑的因素30十四、 评价损失程度的几个概念32十五、 建立信用额度34十六、 将损失摊入经营成本34十七、 对
2、冲的含义36十八、 选择对冲风险的衍生工具需要考虑的因素37十九、 保险的概念38二十、 保险的代价39二十一、 SWOT分析40二十二、 项目风险分析47二十三、 项目风险对策49二十四、 法人治理50二十五、 发展规划分析62一、 公司概况(一)公司基本信息1、公司名称:xx有限责任公司2、法定代表人:薛xx3、注册资本:730万元4、统一社会信用代码:xxxxxxxxxxxxx5、登记机关:xxx市场监督管理局6、成立日期:2011-3-217、营业期限:2011-3-21至无固定期限8、注册地址:xx市xx区xx(二)公司主要财务数据公司合并资产负债表主要数据项目2020年12月201
3、9年12月2018年12月资产总额4426.733541.383320.05负债总额2567.902054.321925.93股东权益合计1858.831487.061394.12公司合并利润表主要数据项目2020年度2019年度2018年度营业收入16149.1612919.3312111.87营业利润4024.563219.653018.42利润总额3554.082843.262665.56净利润2665.562079.141919.20归属于母公司所有者的净利润2665.562079.141919.20二、 产业环境分析高质量发展势头良好,主要指标保持全国同类城市前列,预计地区生产总值增
4、长7.8%左右。新动能加快成长,高新技术产业增加值占经济总量比重达24.5%,数字经济占比40%左右,“芯屏端网”产业规模不断壮大,五大产业基地建设全面提速,构筑起高质量发展强大支撑。当前,武汉正处于高质量发展关键时期。我们要准确把握我国仍处于重要战略机遇期,经济稳中向好、长期向好的基本趋势没有改变,坚定必胜信心,保持战略定力,集中精力做好武汉的事情。我们要看到,推动长江经济带发展、促进中部地区崛起等国家战略叠加聚焦,为武汉高质量发展提供了战略机遇,特别是第七届世界军人运动会成功举办,极大提升了城市知名度和国际影响力,城市认同、城市自信空前高涨,武汉高质量发展进入“高光时刻”。我们必须抓住机遇
5、、乘势而上,提升城市能级和核心竞争力,加快建设现代化、国际化、生态化大武汉,加速迈向国家中心城市和新一线城市。三、 加快产品创新和产业化技术突破面向世界科技前沿、经济主战场、国家重大需求和人民生命健康,瞄准国际先进技术水平,持续健全创新体系,完善产业创新生态,大力推进创新产品的开发和产业化,促进医药工业发展向创新驱动转型。(一)强化关键核心技术攻关大力推动创新产品研发。推动企业围绕尚未满足的临床,加大投入力度,开展创新产品的开发。支持企业立足本土和优势,面向全球市场,紧盯新靶点、新机制药物开展研发,积极引领创新。推进中药守正创新,开发与中药临床定位应、体现其作用特点和优势的中药新药。完善以临床
6、价值为的药物临床研发指导原则,强化信息引导,促进企业合理布发管线。提高产业化技术水平。支持企业整合科技资源,围绕、医疗器械生产的关键技术、核心装备、新型材料开展,开发和转化应用一批先进技术,构筑产业技术新优势点提升新型生物药生产技术、原料药创新工艺、高端制产技术、中药全过程质量控制技术、医疗器械工程化技关键部件生产技术。(二)推动创新药和高端医疗器械产业化与应用加快新产品产业化进程。持续完善审评审批政策,发展与技术创新相适应的审评能力,健全以临床价值为导向的新药评估机制,充实审评力量,建立研审联动工作机制,促进临床价值确定的创新产品加快上市。更好发挥新型工业化示范基地承载作用,支持建设一批高水
7、平示范项目,促进各类资源要素向创新产品产业化聚集。促进创新产品推广应用。稳步提升医保筹资水平,持续推进医保目录动态调整和准入谈判,健全新药价格形成机制。大力发展商业健康保险,依法依规推动健康数据获取与利用,鼓励将医疗新技术、新药品、新器械纳入保障范围,促进创新产品的市场化应用。完善新审批上市药品采购政策,促进医疗机构根据临床需求合理使用。发展若干创新药、新型医疗器械重磅产品,提高对行业增长的贡献率。(三)健全医药创新支撑体系加强产学研医技术协作。支持医药创新领军企业加强与国家实验室、国家科研机构、高水平研究型大学等机构的合作,共同打造生物医药领域国家战略科技力量。以企业牵头整合集聚创新资源,形
8、成跨领域、大协作、高强度的创新基地,在重点细分领域布局建设国家制造业创新中心,支持建设省级医药制造业创新中心,加强行业关键共性技术攻关。提高专业化的研发服务能力。在新药研发领域,支持发展可提供药物发现、药学研究、药理毒理研究、临床研究、检验检测等服务的高水平第三方机构。围绕医疗器械研发链条,支持建立可从事产品设计、技术开发、工装开发、合同定制、质量检测的专业化服务机构,提高医疗器械分工协作水平。支持建设管理规范、运营高效、创新转化能力强的高水平临床研究中心,发展研究型病房,提高临床研究设计能力和研究服务能力。营造激励创新的良好环境。建立有效的科技成果转化体系和激励机制,激活高校、科研院所、医疗
9、机构的创新资源,提高科技成果转化水平。健全药品专利纠纷早期解决机制,制定相关配套措施,保障权利人合法权益。加大知识产权保护力度,依法裁判赔偿数额,对严重故意侵权行为实施惩罚性赔偿,提高侵权违法成本。四、 必要性分析1、提升公司核心竞争力项目的投资,引入资金的到位将改善公司的资产负债结构,补充流动资金将提高公司应对短期流动性压力的能力,降低公司财务费用水平,提升公司盈利能力,促进公司的进一步发展。同时资金补充流动资金将为公司未来成为国际领先的产业服务商发展战略提供坚实支持,提高公司核心竞争力。五、 中心趋势测量中心趋势测量是确定风险概率分布中心的重要方法。在各种不同的测量方法中,主要有以下几种方
10、法。(一)算术平均数算术平均数是指用平均数表示的统计指标,分为总体的一般平均指标和时序平均指标。一般平均指标是指同质总体内某个数量标志(在一定时间内)的平均值;时序平均指标是某一个统计指标在不同时间的数量平均值。(二)加权平均数加权平均数(期望值)是用每一项目或事件的概率加权平均计算出来的。(三)中位数衡量损失、预测损失的另一种方法是计算中位数。中位数也称值,位于数据的中心位置。(四)众数众数是一种根据位置确定的平均数。顾名思义,众数就是分布数列中最常出现的变量值,即频数或频率最大的变量X的观测值。数列中最常出现的变量的观测值说明该变量观测值最具有代表性,因此以之反映变量的一般水平。众数具有这
11、样的特点:众数是一种位置平均数,它不受数列中各单位变量观测值的影响,因此难以准确地反映数列变量观测值的平均水平。但是,当数列中有异常变量观测值时,它不受数列两端异常变量观测值的影响,增强其作为变量观测值数列的一般水平的代表性。由于众数是频数最大的变量观测值,因此,当分布数列没有明显的集中趋势而趋于均匀分布的情况下,就无众数可言了。如果分布数列有多个众数出现就应重新分组,或将各组频数依序双双合并,求得一个有明显集中趋势的分布数列,然后再确定众数。六、 变动程度的测定衡量风险大小取决于不确定性的大小,取决于实际损失偏离预期损失的程度,而不确定性的大小可以通过对发生损失距离期望的偏差来确定,即风险度
12、。风险度是衡量风险大小的一个数值,这个数值是根据风险所致损失的概率和一定规则的计算得到的。风险度越大,就意味着对将来越没有把握,风险就越大;反之,风险就越小。(一)方差和标准差对于随机变量X,如果X1,X2,Xn是随机变量的n个观测值,X是随机变量的算术平均数,称(Xi-X)2(i=1,2,n)为观测值Xi的平方偏差,称(X1-X)2,(X2-X)2,. ,(Xi- X)2的算术平均数为这组数据的平均平方偏差,简称方差(或均方差)。方差的算术平方根是标准差或根方差。标准差是衡量测量值与平均值离散程度的尺度,标准差越大,数据就越分散,损失波动的幅度就越大,较大损失出现的可能性就越大。(二)变异系
13、数风险的稳定性可以通过变异系数反映出来。变异系数越大,风险的稳定性越弱,风险也就越大;相反,风险的稳定性越强,损失的风险越小。变异系数是标准差与均值或期望值的比例,也称标准差系数或平均偏差系数。风险衡量中,风险的稳定性对衡量具有重要意义。某一事故偏离预期损失的方差越大,管理人员就越担心,损害也就越大。对变异系数的大小没有统一的规范,可以根据需要在一定幅度内灵活确定。一般情况下,变异系数越小,则偏差就越小,据此制定的风险管理策略就越可靠,重大风险事故发生的可能性就越小。(三)偏态前面讲过平均数与中位数的概念,在这两个指标相等的情况下,变量的频数分布呈对称分布,即没有偏态。当中位数与平均数不相等时
14、,分布就会出现偏态。当中位数大于平均数时,表明分布聚集于左边而向右边偏斜。当中位数小于平均数时,表明分布聚集于右边而向左边偏斜。七、 损失程度的估计风险损失程度是指风险事故可能造成的损失值,即风险价值。在衡量风险损失程度时,除了需要考虑风险单位的内部机构、用途、消防设施等以外,还需要考虑以下几方面的因素:损失形态、损失频率、损失金额和损失的时间。(一)同一原因所致各种形态的损失同一原因导致的多形态的损失,不仅要考虑风险事件所致的直接损失,而且还要考虑风险事件引起的其他相关的间接损失。一般来说,间接损失比直接损失更严重。例如,尽管汽车碰撞发生的次数大于因碰撞所致的潜在损失,但是因责任诉讼所致的责
15、任损失往往大于汽车因碰撞所致的损失,因此,一般来说,汽车责任风险的所致损失大于财产损失风险。(二)单一风险事件所涉及的损失单位数单一风险事件所引起损失的单位越多,其损失就越严重,损失程度和风险单位数大多呈正相关关系。(三)损失的时间一般来说,风险事件发生的时间越长,损失频率越大,损失的程度也就越大。估计损失程度不仅要考虑损失的金额,还要考虑损失的时间价值。(四)损失金额一般情况下,损失金额直接显示损失程度的大小,损失金额越大,损失程度就越大。在一些特殊的情况下,损失金额的大小使损失频率、损失时间的估计变得微不足道。1、单次风险事故所致损失金额单次风险事故所致的损失金额一般来说不能全部列举出来,
16、它可以在某一区间内取值,因此它是连续型随机变量。对于损失金额的概率分布,很多经验数据表明可以利用正态分布、对数正态分布、帕累托分布等来进行拟合估计。2、一定时期总损失一定时期总损失是指在已知该时期内损失次数概率分布和每次损失金额概率分布的基础上所求的损失总额。一定时期总损失金额为发生一次损失时的损失额,加上2次损失发生时的损失额,等等。为简单起见,以例子说明。3、随机模拟法的应用现实中,企业财产损失次数的分布和损失程度的分布可能是比较复杂的,所以以上逐个分析各种可能的方法太烦琐,甚至是不可能的。在这种情况下,就要应用到随机模拟的方法。随机模拟法是一种仿真的方法,通过产生随机数的方法,模拟企业财
17、产在较长时间内(如100年)发生损失的情况,从中得到年总损失额的分布。具体过程是:首先规定随机数大小与损失次数的关系、随机数大小与损失程度的关系,然后开始第一轮模拟。产生一个随机数,看其代表的损失次数,假如这个随机数代表该年发生N次损失,则再生成N个随机数,对应于每次损失中的损失额,把这N个损失额累加起来,就得到了第一轮模拟中的损失额。接下来开始第2轮,第3轮,一直模拟下去,直到达到要求的轮数。这样就可以得到年总损失额的概率分布。当然,由于总的模拟轮数偏少,表中的结果是不准确的。在这种少轮次模拟中出现的损失额其概率是偏高的。在实践中,可以采用计算机进行模拟的计算,因而可以进行上万轮的模拟计算,
18、以得到比较可靠的模拟结果。4、均值和标准差的估算有时人们只关心损失幅度的某个特征值,如均值和标准差。这时就可以直接对总体均值和标准差进行区间估算。不同的数据量,采用的方法也不同。(1)样本容量较大,已知样本均值和抽样误差,估计总体均值。(2)样本容量较小,总体为正态分布而o未知时,估计总体均值。(3)样本容量较小,总体为正态分布时,估计总体方差。(五)所需暴露单位数量的估算根据大数定律可知,随着暴露单位的数量趋于无穷大,实际的损失频率将会趋近于期望的真实损失频率。但在实际中,一个组织的暴露单位的数量绝不可能无穷大,大多数情况下这是一个有限的数字。而且在很多情况下,这个数字几乎称不上“大”。因此
19、,就存在这样一个问题:当样本不够充分大时,会导致多大的错误?也就是说,风险评估并不是百分之百地以一种概率的说法对未来进行预测,尽管概率就已经体现了不确定性,但实际中由于许多统计原理所需的条件不能满足,这种预测本身也带有一定的不确定性。对于这种情况,风险经理可能会有另一种问法:“为了有95%的把握使最大可能损失的估计值与真实值的差别不超过5%,必须有多少暴露单位?”或者说,如果风险管理者希望有(1a)的把握保证,企业面临的某种实际损失率与给定的预期损失率之差的变动程度不超过E,则风险单位数要多大才能满足上述要求?在回答这个问题时,我们假设损失是以二项分布假定的方式发生的,即风险单位发生损失是相互
20、独立的,并且每个风险单位损失发生的概率不变。这样,当n足够大时,损失近似服从正态分布。从以上影响损失的因素可以看出,风险的大小取决于损失的程度而不是损失发生的频率。风险是损失的不确定性,风险事件导致的损失频率和损失程度的大小具有随机性,损失频率和损失程度是衡量风险的两个重要指标。但是,风险的大小主要取决于损失的程度而不是损失的概率。八、 损失频率的估计通过对大量资料的统计分析,可以估算损失次数和损失幅度的概率,并建立一定形式的概率分布。常见的方法有两种:根据经验损失资料建立损失概率分布表;应用理论概率建立损失概率分布表。根据经验损失资料建立损失概率分布表。利用经验损失资料构造概率分布的首要任务
21、是使收集的资料足够多,并且具有相当的可靠性。当企业自身缺乏经验数据时,可以利用来自保险公司、同业公会、统计部门等的经验数据作补充。风险管理人员应该系统地、连续地收集相关的经验损失资料,包括风险单位的特性和数量、事故发生的日期、造成事故损失的原因、每次损失金额、每次损失事故涉及的风险单位等数据。当风险管理人员掌握了大量在相同条件下风险单位发生的损失资料后,可以通过统计整理和分析,获得经验损失概率分布,并以此预测未来发生的损失情况。根据“大数法则”随着观察样本量的不断增加,实际观察结果与客观存在的结果之间的差异将逐渐减小,估计精度不断提高。应用理论概率建立损失概率分布表。在风险管理实践中,通常没有
22、足够多的观察资料来建立损失概率分布,但是可以从中发现某些类型的损失结果呈现出某些统计规律。比如,损失事故发生的次数可以视为离散型随机变量,其概率分布服从二项分布或泊松分布,损失金额是连续型随机变量,其概率分布通常服从正态分布或对数正态分布等。由此,利用经验数据来拟合模型的待定参数后,就可以得到损失概率分布表,进而预测未来一定时期内的损失情况。在衡量损失频率时,需要考虑三项因素:风险单位数、损失形态、损失事件(或原因)。这三项因素的不同组合,会使风险损失频率的大小不同。下面举例说明风险单位数,损失形态、损失事件不同组合下的损失频率估计。(1)一个风险单位遭受单一事件所致单一损失形态的损失频率。如
23、果某一事件发生,另一事件不可能发生,这两个事件是相互排斥事件。(2)一个风险单位遭受多种事件所致单一形态的损失频率。如果两种或多种事件能在同一时期内发生,那么这些结果共同发生的概率就需要计算得到。(3)一个风险单位遭受单一事件所致多种损失形态的损失频率。(4)多个风险单位遭受单一事件所致单一形态的损失频率。多个风险单位遭受单一事件所致损失的概率取决于这些风险单位是否独立。如果两个风险单位具有这样的特性,其中一个风险单位遭受事件的损失,不会影响另一个风险单位损失的概率,则称这两个风险单位是相互独立的。如果两个风险单位是相关的,可以用条件概率来计算事故发生的概率。两个风险单位A、B都发生损失的概率
24、是两个概率的乘积:A风险单位发生的概率;在A风险单位发生事故的情况下,B风险单位发生的条件概率。在A风险单位发生的条件下,B风险单位发生的概率,称为A风险单位对B风险单位的条件概率。如果两个风险单位不相互独立,那么,计算多风险单位遭受一个风险事件的损失概率,就需要考虑条件概率。根据相关性风险单位的计算,可以得出以下几方面的结论。条件概率越大,风险单位的相关性越强。一个风险单位发生事故,另一个风险单位不发生事故的概率越小。如果两个风险单位完全相关,则一个风险单位发生事故,就意味着另一个风险单位发生事故。条件概率越大,风险单位都发生风险事故的概率越大。(5)多个风险单位遭受多种损失事件所致多种损失
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 蛋白 降解 技术 PROTAC 药物 公司企业 风险 管理 报告 参考
限制150内