二次函数中的存在性问题.doc
《二次函数中的存在性问题.doc》由会员分享,可在线阅读,更多相关《二次函数中的存在性问题.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数中的存在性问题1. 如图,已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点. 若以AB为直角边的PAB与OAB相似,请求出所有符合条件的点P的坐标2. 抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C点P在抛物线上,直线PQ/BC交x轴于点Q,连接BQ(1)若含45角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;(2)若含30角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P
2、的坐标3. 如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD10,OB8将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合(1)若抛物线经过A、B两点,求该抛物线的解析式:_;(2)若点M是直线AB上方抛物线上的一个动点,作MNx轴于点N是否存在点M,使AMN与ACD相似?若存在,求出点M的坐标;若不存在,说明理由4. 已知抛物线经过A、B、C三点,点P(1,k)在直线BC:y=x3上,若点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的四边形为平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由1.解:由题意,设OA=m,则OB=2m;当BA
3、P=90时,BAPAOB或BAPBOA; 若BAPAOB,如图1,可知PMAAOB,相似比为2:1;则P1(5m,2m),代入,可知, 若BAPBOA,如图2,可知PMAAOB,相似比为1:2;则P2(2m,),代入,可知,当ABP=90时,ABPAOB或ABPBOA; 若ABPAOB,如图3,可知PMBBOA,相似比为2:1;则P3(4m,4m),代入,可知, 若ABPBOA,如图4,可知PMBBOA,相似比为1:2;则P4(m,),代入,可知,2.解:(1)由抛物线解析式可得B点坐标(1,3).要求直线BQ的函数解析式,只需求得点Q坐标即可,即求CQ长度.过点D作DGx轴于点G,过点D作D
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 中的 存在 问题
限制150内