巧用化归思想解题举例.doc
《巧用化归思想解题举例.doc》由会员分享,可在线阅读,更多相关《巧用化归思想解题举例.doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、巧用化归思想解题举例 数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质认识,数学方法是实施有关数学思想的一种方式、途径、手段,数学思想方法是数学发现、发明的关键和动力抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识 所谓化归思想就是化未知为已知、化繁为简、化难为易如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等【例1】如图,反比例函数y=与一次函
2、数y=x+2的图象交于A、B两点 (1)求 A、B两点的坐标; (2)求AOB的面积 解:解方程组 得 所以A、B两点的坐标分别为A(2,4)B(4,2(2)因为直线y=x+2与y轴交点D坐标是(0, 2), 所以 所以 点拨:两个函数的图象相交,说明交点处的横坐标和纵坐标,既适合于第一个函数,又适合于第二个函数,所以根据题意可以将函数问题转化为方程组的问题,从而求出交点坐标【例2】解方程: 解:令y= x1,则2 y25 y +2=0 所以y1=2或y2=,即x12或x1= 所以x3或x= 故原方程的解为x3或x= 点拨:很显然,此为解关于x1的一元二次方程如果把方程展开化简后再求解会非常麻
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 巧用化归 思想 解题 举例
限制150内