图形的变换(1)2012、12、13 (2).doc
《图形的变换(1)2012、12、13 (2).doc》由会员分享,可在线阅读,更多相关《图形的变换(1)2012、12、13 (2).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、图形的变换1、在中,为边上的点,联结(如图所示)如果将沿直线翻折后,点恰好落在边的中点处,那么点到的距离是 1【答案】2。【考点】翻折变换(折叠问题)。【分析】沿直线翻折后,点恰好落在边的中点处,假设这个点是。作,垂足分别为。 在中,=3,=3,。 ,即。 ,即。 所以点M到AC的距离是2。2、已知正方形ABCD中,点E在边DC上,DE = 2,EC = 1(如图所示), 把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为 . 2【答案】1或5。【考点】正方形的性质,旋转的性质,勾股定理。【分析】旋转两种情况如图所示: 顺时针旋转得到F1点,由旋转对称的性质知F1C=EC
2、 =1。 逆时针旋转得到F2点,则F2B=DE = 2, F2C =F2BBC=5。4、如图,在RtABC中,C=90,A=30,BC=1,点D在AC上,将ADB沿直线BD翻折后,将点A落在点E处,如果ADED,那么线段DE的长为 4【答案】。【考点】翻折变换(折叠问题),折叠对称的性质,锐角三角函数定义,特殊角的三角函数值,三角形内角和定理,等腰三角形的判定和性质。【分析】在RtABC中,C=90,A=30,BC=1,。将ADB沿直线BD翻折后,将点A落在点E处,ADB=EDB,DE=AD。ADED,CDE=ADE=90,EDB=ADB=。CDB=EDBCDE=13590=45。C=90,C
3、BD=CDB=45。CD=BC=1。DE=AD=ACCD=。5. 如图,在梯形ABCD中,ADBC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE(1)求证:AF=DE;(2)若BAD=45,AB=a,ABE和DCF的面积之和等于梯形ABCD的面积,求BC的长5【答案】(1)证明:在梯形ABCD中,ADBC,AB=CD,BAD=CDA。在等边三角形ABE和等边三角形DCF中,AB=AE,DC=DF,且BAE=CDF=60,AE=DF,EAD=FDA,AD=DA。AEDDFA(SAS)。AF=DE。 (2)解:如图作BHAD,CKAD,则有BC=HK。
4、BAD=45,HAB=KDC=45。AB=BH=AH。同理:CD=CK=KD。S梯形ABCD=,AB=a,S梯形ABCD=。又SABE=SDCF=,解得:。【考点】等腰梯形的性质,全等三角形的判定和性质,等边三角形的性质。【分析】(1)根据等腰梯形和等边三角形的性质以及全等三角形SAS的判定证明AEDDFA即可。(2)如图作BHAD,CKAD,利用给出的条件和梯形的面积公式即可求出BC的长。6、如图,矩形ABCD中,E是AD的中点,将ABE沿BE折叠后得到GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为【 】A B C D6【答案】B。【考点】翻折变换(折叠问题),矩形的性质和
5、判定,折叠对称的性质,全等三角形的判定和性质,勾股定理。【分析】过点E作EMBC于M,交BF于N。四边形ABCD是矩形,A=ABC=90,AD=BC,EMB=90,四边形ABME是矩形。AE=BM,由折叠的性质得:AE=GE,EGN=A=90,EG=BM。ENG=BNM,ENGBNM(AAS)。NG=NM。E是AD的中点,CM=DE,AE=ED=BM=CM。EMCD,BN:NF=BM:CM。BN=NF。NM=CF=。NG=。BG=AB=CD=CF+DF=3,BN=BGNG=3。BF=2BN=5。故选B。7、如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面
6、积等分线(1)三角形有 条面积等分线,平行四边形有 条面积等分线;(2)如图所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线;(3)如图,四边形ABCD中,AB与CD不平行,ABCD,且SABCSACD,过点A画出四边形ABCD的面积等分线,并写出理由7【答案】解:(1)6;无数。 (2)这个图形的一条面积等分线如图:连接2个矩形的对角线的交点的直线即把这个图形分成2个相等的部分即OO为这个图形的一条面积等分线。(3)四边形ABCD的面积等分线如图所示:理由如下:过点B作BEAC交DC的延长线于点E,连接AE。BEAC,ABC和AEC的公共边AC上的高也相等, SABC=SAEC
7、。SACDSABC,面积等分线必与CD相交,取DE中点F,则直线AF即为要求作的四边形ABCD的面积等分线。【考点】面积及等积变换,平行线之间的距离,三角形的面积,平行四边形的性质,矩形的性质。【分析】(1)读懂面积等分线的定义,不难得出:三角形的面积等分线是三角形的中线所在的直线;过两条对角线的交点的直线都可以把平行四边形的面积分成2个相等的部分;从而三角形有3条面积等分线,平行四边形有无数条面积等分线。来源:学科网(2)由(1)知,矩形的一条对角线所在的直线就是矩形的一条面积等分线;(3)过点B作BEAC交DC的延长线于点E,连接AE根据ABC和AEC的公共边AC上的高也相等推知SABC=
8、SAEC;由“割补法”可以求得。8、如图,有一张矩形纸片,将它沿对角线AC剪开,得到ACD和ABC.(1)如图,将ACD沿AC边向上平移,使点A与点C重合,连接AD和BC,四边形ABCD是 形;(2)如图,将ACD的顶点A与A点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同一直线上,则旋转角为 度;连接CC,四边形CDBC是 形;(3)如图,将AC边与AC边重合,并使顶点B和D在AC边的同一侧,设AB、CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由。9、如图,ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与
9、点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PEAB于E,连接PQ交AB于D(1)当BQD=30时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由9【答案】解:(1)ABC是边长为6的等边三角形,ACB=60。BQD=30,QCP=90。设AP=x,则PC=6x,QB=x,QC=QB+C=6+x。在RtQCP中,BQD=30,PC=QC,即6x=(6+x),解得x=2。当BQD=30时,AP=2。(2)当点P、Q运动时,线段DE的长度不会改变。理由如下:作QFAB,交直线AB的延长线于点F,连接QE,PF。PEAB
10、于E,DFQ=AEP=90。点P、Q做匀速运动且速度相同,AP=BQ。ABC是等边三角形,A=ABC=FBQ=60。在APE和BQF中,A=FBQ,AP=BQ,AEP=BFQ=90,APEBQF(AAS)。AE=BF,PE=QF且PEQF。四边形PEQF是平行四边形。DE=EF。EB+AE=BE+BF=AB,DE=AB。又等边ABC的边长为6,DE=3。当点P、Q运动时,线段DE的长度不会改变。【考点】动点问题,等边三角形的性质,全等三角形的判定和性质,含30度角的直角三角形的性质。【分析】(1)由ABC是边长为6的等边三角形,可知ACB=60,再由BQD=30可知QCP=90,设AP=x,则
11、PC=6x,QB=x,在RtQCP中,BQD=30,PC=QC,即6x=(6+x),求出x的值即可。来源:Z#xx#k.Com(2)作QFAB,交直线AB的延长线于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出APEBQF,再由AE=BF,PE=QF且PEQF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变。10、如图1,四边形ABCD是边长为的正方形,长方形AEFG的宽,长将长方形AEFG绕点A顺时针旋转15得到长方形AM
12、NH (如图2),这时BD与MN相交于点O(1)求的度数;(2)在图2中,求D、N两点间的距离;(3)若把长方形AMNH绕点A再顺时针旋转15得到长方形ARTZ,请问此时点B在矩形ARTZ的内部、外部、还是边上?并说明理由图1 图210【答案】解:(1)如图,设AB与MN相交于点K,根据题意得:BAM=15, 四边形AMNH是矩形,M=90。AKM=90BAM=75。BKO=AKM=75。,四边形ABCD是正方形,ABD=45。DOM=BKO+ABD=75+45=120。(2)连接AN,交BD于I,连接DN,NH=,AH=,H=90,。HAN=30。AN=2NH=7。由旋转的性质:DAH=15
13、,DAN=45。DAC=45,A,C,N共线。四边形ABCD是正方形,BDAC。AD=CD=,。NI=ANAI=73=4。在RtDIN中,。(3)点B在矩形ARTZ的外部。理由如下:如图,根据题意得:BAR=15+15=30。R=90,AR= ,。,AB= 。点B在矩形ARTZ的外部。【考点】旋转的性质,矩形的性质,正方形的性质,勾股定理,锐角三角函数定义,特殊角的三角函数值,实数的大小比较。【分析】(1)由旋转的性质,可得BAM=15,即可得OKB=AOM=75,又由正方形的性质,可得ABD=45,然后利用外角的性质,即可求得DOM的度数。(2)首先连接AM,交BD于I,连接DN,由特殊角的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 图形的变换12012、12、13 2 图形 变换 2012 12 13
限制150内