生物医学工程.doc
《生物医学工程.doc》由会员分享,可在线阅读,更多相关《生物医学工程.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、生物医学工程生物医学工程(BiomedicalEngineering,简称BME)是一门由理、工、医相结合的边缘学科,是多种工程学科向 生物医学生物医学渗透的产物。它是运用现代自然科学和工程技术的原理和方法,从工程学的角度,在多层次上研究人体的结构、功能及其相互关系,揭示其生命现象,为防病、治病提供新的技术手段的一门综合性、高技术的学科。10本词条无基本信息模块,欢迎各位编辑词条,额外获取10个积分。目录1基本简介2发展历程3工程专业4学科内容5工程分支6著名学府基本简介生物医学工程(BiomedicalEngineering,简称BME)是一门由理、工、医相结合的边缘学科,是多种工程学科向
2、生物医学渗透的产物。生物医学工程(Biomedical-Engineering)是一门新兴的边缘学科,它综合工程学、生物学和医学的理论和方法,在各层次上研究人体系统的状态变化,并运用工程技术手段去控制这类变化,其目的是解决医学中的有关问题,保障人类健康,为疾病的预防、诊断、治疗和康复服务。它有一个分支是生物信息、化学生物学等方面主要攻读生物、计算机信息技术和仪器分析化学等,微流控芯片技术的发展,为医疗诊断和药物筛选,以及个性化、转化医学提供了生物医学工程新的技术前景,化学生物学、计算生物学和微流控技术生物芯片是系统生物技术,从而与系统生物工程将走向统一的未来。2发展历程生物医学工程兴起于20世
3、纪50年代,它与医学工程和生物技术有着十分密切的关系,而且发展非常迅速,成为世界各国竞争的主要领域之一。生物医学工程学与其他学科一样,其发展也是由科技、社会、经济诸因素所决定的。这个名词最早出现在美国。1958年在美国成立了国际医学电子学联合会,1965年该组织改称国际医学和生物工程联合会,后来成为国际生物医学工程学会。生物医学工程学除了具有很好的社会效益外,还有很好的经济效益,前景非常广阔,是目前各国争相发展的高技术之一。以1984年为例,美国生物医学工程和系统的市场规模约为110亿美元。美国科学院估计,到2000年其产值预计可达4001000亿美元。生物医学工程学是在电子学、微电子学、现代
4、计算机技术,化学、高分子化学、力学、近代物理学、光学、射线技术、精密机械和近代高技术发展的基础上,在与医学结合的条件下发展起来的。它的发展过程与世界高技术的发展密切相关,同时它采用了几乎所有的高技术成果,如航天技术、微电子技术等。3工程专业生物医学工程学是一门理工医相结合的交叉学科,它是应用工程技术的理论和方法,研究解决医学防病治病,保障人民健康的一门新兴的边缘科学。生物医学工程学研究的学科方向主要有:计算机网络技术和各类大型医疗设备;计算机网络技术包括:数字化医学中心,医学图象处理及多媒体在医学中的应用,生物信息的控制及神经网络生物医学信号检测与处理。随着科学技术的发展,各类大型医疗设备在医
5、院中的应用越来越广泛,大型医疗设备的操作、维修及管理人员是各大医院及公司急需的人才。3.1教学实践包括金工实习(34周)、电子设计(23周)、生产实习(34周)、毕业设计(1216周)。3.2培养目标本专业培养具备生命科学、电了技术、计算机技术及信息科学有关的基础理论知识以及医学与工程技术相结合的科学研究能力,能在生物医学工程领域、医学仪器以及其它电子技术、计算机技术、信息产业等部门从事研究、开发、教学及管理的高级工程技术人才。3.3培养要求本专业学生主要学习生命科学、电子技术、计算机技术和信息科学的基本理论和基本知识,受到电子技术、信号检测与处理、计算机技术在医学中的应用的基本训练,具有生物
6、医学工程领域中的研究和开发的基本能力。3.4主修课程模拟电子技术、数字电子技术、人体解剖学、生理学、基础生物学、生物化学、信号与系统、算法与数据结构、数据库原理、数字信号处理、EDA技术、数字图像处理、自动控制原理、医学成像原理、生物信息学3.5就业方向1掌握电子技术的基本原理及设计方法;2掌握信号检测和信号处理及分析的基本理论;3具有生物医学的基础知识;4具有微处理器和计算机应用能力;5具有生物医学工程研究与开发的初步能力;6具有一定人文社会科学基础知识;7了解生物医学工程的发展动态;8掌握文献检索、资料查询的基该方法。13.6开设院校按高校热度排序辽宁大连理工大学北京清华大学广东中山大学上
7、海复旦大学山东山东大学四川西南交通大学浙江浙江大学江苏东南大学北京北京理工大学广东华南理工大学吉林吉林大学河南郑州大学重庆重庆大学陕西西安交通大学天津天津大学山东山东科技大学四川电子科技大学北京北京交通大学广东暨南大学陕西西安电子科技大学辽宁东北大学安徽合肥工业大学江苏南京航空航天大学河南河南科技大学河北燕山大学上海上海理工大学云南昆明理工大学重庆重庆医科大学江苏中国矿业大学天津河北工业大学北京北京工业大学四川西南科技大学重庆重庆邮电大学黑龙江哈尔滨工程大学江苏江苏大学江西南昌航空大学河北河北科技大学湖北中南民族大学辽宁沈阳工业大学吉林长春理工大学重庆重庆理工大学(原重庆工学院)北京北京联合大
8、学陕西西安工业大学北京首都医科大学辽宁中国医科大学浙江中国计量学院四川成都信息工程学院河北东北大学秦皇岛分校广东广东药学院广东广州医学院吉林长春工业大学24学科内容生物力学是运用力学的理论和方法,研究生物组织和器官的力学特性,研究机体力学特征与其功能的关系。生物力学的研究成果对了解人体伤病机理,确定治疗方法有着重大意义,同时可为人工器官和组织的设计提供依据。生物力学中又包括有生物流变学(血液流变学、软组织力学和骨骼力学)、循环系统动力学和呼吸系统动力学等。目前生物力学在骨骼力学方面进展较快。生物控制论是研究生物体内各种调节、控制现象的机理,进而对生物体的生理和病理现象进行控制,从而达到预防和治
9、疗疾病的目的。其方法是对生物体的一定结构层次,从整体角度用综合的方法定量地研究其动态过程。生物效应是研究医学诊断和治疗中,各种因素可能对机体造成的危害和作用。它要研究光、声、电磁辐射和核辐射等能量在机体内的传播和分布,以及其生物效应和作用机理。生物材料是制作各种人工器官的物质基础,它必须满足各种器官对材料的各项要求,包括强度、硬度、韧性、耐磨性、挠度及表面特性等各种物理、机械等性能。由于这些人工器官大多数是植入体内的,所以要求具有耐腐蚀性、化学稳定性、无毒性,还要求与机体组织或血液有相容性。这些材料包括金属、非金属及复合材料、高分子材料等;目前轻合金材料的应用较为广泛。医学影像是临床诊断疾病的
10、主要手段之一,也是世界上开发科研的重点课题。医用影像设备主要采用 X射线、超声、放射性核素磁共振等进行成像。X射线成像装置主要有大型X射线机组、X射线数字减影(DSA)装置、电子计算机X射线断层成像装置(CT);超声成像装置有B型超声检查、彩色超声多普勒检查等装置;放射性核素成像设备主要有照相机、单光子发射计算机断层成像装置和正电子发射计算机断层成像装置等;磁成像设备有共振断层成像装置;此外还有红外线成像和正在兴起的阻抗成像技术等。医用电子仪器是采集、分析和处理人体生理信号的主要设备,如心电、脑电、肌电图仪和多参量的监护仪等正在实现小型化和智能化。通过体液了解生物化学过程的生物化学检验仪器已逐
11、步走向微量化和自动化。治疗仪器设备的发展比诊断设备要稍差一些。目前主要采用的是X射线、射线、放射性核素、超声、微波和红外线等仪器设备。大型的如:直线加速器、X射线深部治疗机、体外碎石机、人工呼吸机等,小型的有激光腔内碎石机、激光针灸仪以及电刺激仪等。手术室中的常规设备已从单纯的手术器械发展到高频电刀、激光刀、呼吸麻醉机、监护仪、X射线电视,各种急救治疗仪如除颤器等。为了提高治疗效果,在现代化的医疗技术中,许多治疗系统内有诊断仪器或一台治疗设备同时含有诊断功能,如除颤器带有诊断心脏功能和指导选定治疗参数的心电监护仪,体外碎石机中装备了进行定位的X射线和超声成像装置,而植入人体中的人工心脏起搏器就
12、具有感知心电的功能,从而能作出适应性的起搏治疗。介入放射学是放射学中发展速度最快的领域,也就是在进行介入治疗时,采用了诊断用的x射线或超声成像装置以及内窥镜等来进行诊断、引导和定位。它解决了很多诊断和治疗上的难题,用损伤较小的方法治疗疾病。目前各国竞相发展的高技术之一为医学成像技术,其中以图像处理,阻抗成像、磁共振成像、三维成像技术以及图像存档和通信系统为主。在成像技术中生物磁成像是最新发展的课题,它是通过测量人体磁场,来对人体组织的电流进行成像。生物磁成像目前有二个方面。即心磁成像(可用以观察心肌纤维的电活动,可以很好地反映出心律失常和心肌缺血)和脑磁成像(用以诊断癫痫活动、老年性痴呆和获得
13、性免疫缺陷综合征的脑侵入,还可以对病损脑区进行定位和定量)。另一个世界各国竞相发展的高技术是信号处理与分析技术,其中包括心电信号、脑电、眼震、语言、心音呼吸等信号和图形的处理与分析。高技术领域中还有神经网络的研究,目前世界各国的科学家为此掀起了一个研究热潮。它被认为是有可能引起重大突破的新兴边缘学科,它研究人脑的思维机理,将其成果应用于研制智能计算机技术。运用智能原理去解决各类实际难题,是神经网络研究的目的,在这一领域已取得可喜的成果。开设学校温州医学院、广州医学院、广东医学院、徐州医学院、浙江大学、西安交通大学、南方医科大学、四川大学、天津大学、大连理工大学、上海交通大学、上海理工大学、清华
14、大学、首都医科大学、东南大学、华中科技大学、复旦大学、重庆大学、重庆邮电大学、同济大学、北京大学、中南大学、中国科学技术大学、电子科技大学、,西南科技大学,北京航空航天大学、北京工业大学、中国医科大学、山东大学、山东科技大学、湖南大学、重庆医科大学、重庆理工大学、中山大学、深圳大学、天津医科大学、厦门大学、吉林大学、长春理工大学、华南理工大学、杭州电子科技大学、暨南大学、郑州大学、首都医科大学、西安电子科技大学、南京理工大学、北京理工大学、西北工业大学、西安工业大学、沈阳工业大学、东北大学、燕山大学、华东理工大学、武汉大学、西南交通大学、河北工业大学、北京邮电大学、南京邮电大学、南京航空航天大
15、学、南开大学、太原理工大学、中北大学、上海大学、江苏大学、天津工业大学、南京大学、云南大学、苏州大学、中南民族大学、哈尔滨工程大学、山东中医药大学、济宁医学院、武汉理工大学、广西医科大学、广东药学院、成都信息工程学院、佳木斯大学、昆明理工大学、长春理工大学、新疆医科大学、安徽医科大学、湖南工业大学、南昌航空大学、江西中医学院、泰山医学院、等。5工程分支5.1生物医用复合材料生物医用复合材料(biomedical composite materials)是由两种或两种以上的不同材料复合而成的生物医用材料,它主要用于人体组织的修复、替换和人工器官的制造1。长期临床应用发现,传统医用金属材料和高分子
16、材料不具生物活性,与组织不易牢固结合,在生理环境中或植入体内后受生理环境的影响,导致金属离子或单体释放,造成对机体的不良影响。而生物陶瓷材料虽然具有良好的化学稳定性和相容性、高的强度和耐磨、耐蚀性,但材料的抗弯强度低、脆性大,在生理环境中的疲劳与破坏强度不高,在没有补强措施的条件下,它只能应用于不承受负荷或仅承受纯压应力负荷的情况。因此,单一材料不能很好地满足临床应用的要求。利用不同性质的材料复合而成的生物医用复合材料,不仅兼具组分材料的性质,而且可以得到单组分材料不具备的新性能,为获得结构和性质类似于人体组织的生物医学材料开辟了一条广阔的途径,生物医用复合材料必将成为生物医用材料研究和发展中
17、最为活跃的领域。1.生物医用复合材料组分材料的选择要求生物医用复合材料根据应用需求进行设计,由基体材料与增强材料或功能材料组成,复合材料的性质将取决于组分材料的性质、含量和它们之间的界面。常用的基体材料有医用高分子、医用碳素材料、生物玻璃、玻璃陶瓷、磷酸钙基或其他生物陶瓷、医用不锈钢、钴基合金等医用金属材料;增强体材料有碳纤维、不锈钢和钛基合金纤维、生物玻璃陶瓷纤维、陶瓷纤维等纤维增强体,另外还有氧化锆、磷酸钙基生物陶瓷、生物玻璃陶瓷等颗粒增强体。植入体内的材料在人体复杂的生理环境中,长期受物理、化学、生物电等因素的影响,同时各组织以及器官间普遍存在着许多动态的相互作用,因此,生物医用组分材料
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物医学 工程
限制150内