高三数学第二轮专题讲座复习:化归思想.doc
《高三数学第二轮专题讲座复习:化归思想.doc》由会员分享,可在线阅读,更多相关《高三数学第二轮专题讲座复习:化归思想.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高三数学第二轮专题讲座复习:化归思想高考要求 化归与转换的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想 等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法 重难点归纳 转化有等价转化与不等价转化 等价转化后的新问题与原问题实质是一样的 不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正 应用转化化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化 常见的转化有 正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转
2、化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化 典型题例示范讲解 例1对任意函数f(x), xD,可按图示构造一个数列发生器,其工作原理如下 输入数据x0D,经数列发生器输出x1=f(x0);若x1D,则数列发生器结束工作;若x1D,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去 现定义(1)若输入x0=,则由数列发生器产生数列xn,请写出xn的所有项;(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值;(3)若输入x0时,产生的无穷数列xn,满足对任意正整数n均有xnxn+1;求x0的取值范围 命题意图 本题主要考查学生的阅读
3、审题,综合理解及逻辑推理的能力 知识依托 函数求值的简单运算、方程思想的应用 解不等式及化归转化思想的应用 解题的关键就是应用转化思想将题意条件转化为数学语言 错解分析 考生易出现以下几种错因(1)审题后不能理解题意(2)题意转化不出数学关系式,如第2问(3)第3问不能进行从一般到特殊的转化 技巧与方法 此题属于富有新意,综合性、抽象性较强的题目 由于陌生不易理解并将文意转化为数学语言 这就要求我们慎读题意,把握主脉,体会数学转换 解 (1)f(x)的定义域D=(,1)(1,+)数列xn只有三项,(2),即x23x+2=0x=1或x=2,即x0=1或2时故当x0=1时,xn=1,当x0=2时,
4、xn=2(nN*)(3)解不等式,得x1或1x2要使x1x2,则x21或1x12对于函数若x11,则x2=f(x1)4,x3=f(x2)x2若1x12时,x2=f(x1)x1且1x22依次类推可得数列xn的所有项均满足xn+1xn(nN*)综上所述,x1(1,2) 由x1=f(x0),得x0(1,2) 例2设椭圆C1的方程为(ab0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P (1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求ABP的面积函数S(a)的值域;(3)记miny1,y2,yn为y1,y2,yn中最小的一个 设g(a)是以椭圆C1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 二轮 专题讲座 复习 思想
限制150内