《经济定量分析(39页DOC).docx》由会员分享,可在线阅读,更多相关《经济定量分析(39页DOC).docx(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、最新资料推荐投资学与区域经济学定量分析方法佘延双 中国地质大学(北京)二零零六年十一月制作经济定量分析第一部分 多指标综合评价方法在区域经济和投资学等学科中,常常需要用多个变量或多个指标进行综合评价和分析,例如,分析城市经济的综合发展水平、可持续发展能力,评价投资环境、产业竞争力、经济效益,对可选项目进行综合评估等。这些综合评价的共同特点是需要将多个相关指标合成一个综合指标,来反应考察对象的某一方面的综合特征。要完成这项工作,一般要经过以下几个步骤:第一步、选取指标,建立评价的指标体系第二步、收集和整理数据第三步、对数据进行无量纲化处理,即对数据进行标准化处理第四步、确定权重第五步、计算综合评
2、价值第一步主要涉及到指标选取的原则,依照研究的目的以及定量评价所依赖的概念模型或理论基础选取指标并建立评价指标体系。第二步收集和整理数据主要涉及如何获得分析所需要的数据。第三步对数据进行标准化处理主要是应用一些已经很成熟的技术,本文将在后面用到的部分进行介绍。不同定量综合分析方法主要涉及第四步和第五步的过程中,常用的综合评价方法主要有德尔菲法、主成份分析法、因子分析法、层次分析法等。德尔菲法和层次分析法评价结果的可靠性主要依赖建模人所建的概念模型的水平和打分人的专业水平。而主成份分析法和因子分析法评价结果的可靠性主要依赖于分析过程和结果的可解释性以及主成份和公因子的方差贡献率。本部分将在第一章
3、介绍主成份分析法和因子分析法,主要从操作的角度介绍应用这些方法的步骤和软件的操作;第二章介绍层次分析法进行评价分析的资本步骤和实例。第三章介绍其它的一些评价方法。第一章 主成份分析和因子分析在各个领域的科学研究中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为科学研究提供丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在大多数情况下,许多变量之间可能存在相关性而增加了问题分析的复杂性,同时对分析带来不便。如果分别分析每个指标,分析又可能是孤立的,而不是综合的。盲目减少指标会损失很多信息,容易产生错误的结论。因此需要找到一个合理的
4、方法,减少分析指标的同时,尽量减少原指标包含信息的损失,对所收集的资料作全面的分析。由于各变量间存在一定的相关关系,因此有可能用较少的综合指标分别综合存在于各变量中的各类信息。主成分分析与因子分析就是这样一种降维的方法。第一节 主成分分析概述 主成分分析(principal component analysis)是将分散在一组变量上的信息,集中到某几个综合指标(主成分)上的一种探索性统计分析方法。它利用降维的思想,将多个变量化为少数几个互不相关的主成分,从而描述数据集的内部结构。(一)主分成分析原理主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来
5、代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,第P个主成分。(二)主成分分析数学模型F2=a12ZX1+a22ZX2+ap2ZX
6、p Fp=a1mZX1+a2mZX2+apmZXp其中a1i, a2i, ,api(i=1,m)为X的协方差阵的特征值多对应的特征向量,ZX1, ZX2, , ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响注:本文指的数据标准化是指Z标准化。A=(aij)pm=(a1,a2,am,),Rai=iai,R为相关系数矩阵,i、ai是相应的特征值和单位特征向量,12p0 。第二节 主成份分析法的操作步骤 进行主成分分析在SPSS(统计软件)中主要步骤如下:1、指标数据标准化(SPSS软
7、件自动执行);2、指标之间的相关性判定;3、确定主成分个数m;4、主成分Fi表达式;5、主成分Fi命名;6、主成分与综合主成分(评价)值。第三节 应用主成份分析法分析我国产业结构转换能力的实例(一)选取指标建立评价体系 11 产业结构转换能力产业结构转换能力是指产业结构适应市场变化和保持地区经济持续、稳定、协调增长而向高级化调整、演进的可能条件。一个地区产业结构是否有良好的转换能力,反映了该地区产业结构的综合素质和潜力,对当地经济的持续、健康发展至关重要1。比较不同地区相对的产业结构转换能力,有助于了解地区产业结构所处的水平和发展潜力。12 影响产业结构转换能力的一般因素 由于地区的产业结构是
8、地区内各产业部门的结合方式,是生产要素的宏观聚集状态。所以凡影响生产部门存在条件和生产要素的因素都是地区产业结构转换的作用因素。地区的产业结构转换能力也同样受多方面因素的影响,一般可以概括为三个主要的方面:供给因素、需求因素、对外贸易发展水平因素。从供给的角度看,地区的创新能力越强,产业结构的转换动力越大。高的投资与储蓄,高的供给弹性为产业结构的转换提供了广阔的空间。地区的需求水平、需求规模等需求因素推动了地区产业结构的变动。一般来说,一个地区的社会经济发展水平越高,消费层次越高,消费结构变化的越快,对地区产业结构变动的压力越大。 随着生产的国际分工和国际贸易的发展,地区产业结构的变动的转换越
9、来越多与其开放程度,以及参与国际分工的位置有了很大的联系。所以一个地区的对外贸易因素也很大程度上影响了地区的需求与供给,进而影响产业产业结构的变动和转换能力。13 产业转换能力评价的指标的选取对地区产业结构转换能力的评价要选取多个指标综合评价。根据以上关于产业结构转换能力的理论选取下面一些指标建立产业结构转换能力的指标体系。供给推动力因素选取城镇单位每万名职工拥有专业技术人员数(X1)指标反映创新能力;选取投资率(X2)、人均GDP(X3)、GDP增长率(X4)反映地区的积累能力;选取第二产业占GDP的比重(X5)指标反映供给弹性。需求压力因素方面,选取居民消费水平(X6)代表地区的消费求的规
10、模水平;用城镇居民非食品支出占消费支出的比重(X7)和农村居民非食品支出占生活消费支出比重(X8)放映满足基本生活必需后的需求层次。用外贸依存度(X9)反映对外贸易发展水平。本文分析的数据来自于2005中国统计年鉴的相关部分。表1 区域产业结构转换能力评价指标体系表2 区域产业结构转换能力评价整理好的数据(二)主成分分析在SPSS中的具体操作步骤21 将数据导入到SPSS软件中导入有很多中方法,我们可以选择直接复制和粘贴,把数据放到软件中。在界面中可以对数据进行编辑,见图1。图1 数据编辑界面选择可以对数据的属性进行编辑,见下图2。图2 数据属性编辑界面我们可以编辑数据变量的名字、类型和小数点
11、后面的位数。在本例子中,我们把变量分别命名为X1 、X2到X9,选取小数点后两位。22 对数据进行标准化处理SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。选择下图3红色部分跳出图5界面。选择要进行标准化的数据,并选择选项,选择了这个选项后,标准化后的数据将在主数据页面被保存起来,见图5,标准化后的数据变量名称前被加了Z。图3 对数据进行标准化处理图4 选择进行标准化的数据图5 标准
12、化后的数据被保存到先前数据的后面23 进行分析操作SPSS软件本身不提供主成份分析,我们的操作是利用因子分析的一些功能完成主成分分析。运用SPSS统计分析软件Factor过程4对沿海我国32省市市经济综合指标进行主成分分析。具体操作步骤如下:1、选择中的中的,见图6。弹出Factor Analysis对话框,见图7。2、把X1X9或ZX1ZX9选入Variables框3、Descriptives: Correlation Matrix框组中选中Coefficients,然后点击Continue,返回Factor Analysis对话框4、选择可以确定提取参数的标准。5、点击“OK”图6 进行因
13、子分析图7 对参数进行设置 在数据输出窗口,可以看到下面三个表格,见表3、表4、表5。表3 相关系数矩阵表 4 方差分解主成分提取分析表表 5 初始因子载荷矩阵从图表3可知人均GDP(X3)与居民消费水平(X6)、农村居民非食品支出占生活消费支出比重(X8)、外贸依存度(X9),居民消费水平(X6)与贸依存度(X9)等几个指标存在着极其显著的关系。可见许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。主成分个数提取原则主要包括两个标准,第一个是为主成分对应的特征值大于1的前m个主成分,第二个是前m个主成分累计贡献率大于85%。对于第一个原则:特征值在某种程度上可以被看成是表示主成分影响
14、力度大小的指标,如果特征值小于1,说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大,因此一般可以用特征值大于1作为纳入标准。对于第二个原则,累计贡献率反映了前m个主成分,反映了原来总体样本85%以上的信息,基本反应了原来数据的总体情况。通过表4(方差分解主成分提取分析)可知,前三个主成分的特征值大于1,且累计贡献率达到78.31%,前4个主成分的累计贡献率达到86.137%,并不同时满足两个选择主成分的标准。我们可以选择以下处理方法:1)坚持特征至大于1的原则,提取前3个主成分,即m=3;2)坚持累计贡献率大于85%的原则,提取4个主成分,即m=4;3)从解释变量的角度出发,两者
15、兼顾,看提取几个主成分更容易从经济学的角度对各主成分进行解释,更能说明问题;本例子中,我们选择第三个处理方法,先看表5,进行下一步,回来再决定选择提取几个主成分。返回选择图六操作内容,在提取选项菜单中重新选择,见图8。为按特征值大于1的标准进行提取,是默认选择,我们前面的操作是用这个标准的。是自己定义选择提取因子的数目,由前面的经验,在这里我们可以选择它,添入四4,提取4个因子,看看它的结果和前面的表5进行比较,来进行判断。图8 提取规则选择菜单按4个因子进行提取后,我们在结果输出窗口,可以看到表6、和表7与表4和表5有一些不同。表6 方差分解主成分提取分析表表7初始因子载荷矩阵从表7(初始因
16、子载荷矩阵)可知从载荷矩阵中可以看出在第一个主成分中人均GDP(X3)、GDP增长率(X4)、居民消费水平(X6)、农村居民非食品支出占生活消费支出比重(X8)以及外贸依存度(X9)载荷较大,说明第一主成分基本反映了这些指标的信息;第二产业占GDP的比重(X5)和城镇居民非食品支出占消费支出的比重(X7)指标在第二主成分上有较高载荷,说明第二主成分基本反映了这两个指标的信息;投资率(X2)在第三个主成分中载荷较大,说明第三主成分基本反映了投资率(X2)这个指标的信息;每万名职工拥有专业技术人员数(X1)在第四个主成分中载荷较大,说明第四主成分基本反映了每万名职工拥有专业技术人员数(X1)这个指
17、标的信息。用同样的方法对表5进行解释,我们发现,提取4个主成分因子时,从经济学上很容易对四个主成分进行解释,第一个主成分反映地区经济发展水平,第二个主成分反映地区产业结构和城镇需求层次,第三个主成分反映地区投资水平,第四主成分反映地区创新能力水平。我们可以以此为依据对4个主成分进行命名。而表5解释起来不如对表7解释清晰顺畅。合考虑以上因素,可以决定选择提取4个主成分。因为这样累计贡献率达到86.137%,并很容易为4个主成分命名和从经济学上解释这4个主成分;并且选择提取4个主成分比提取3个主成分更容易说明问题。最终决定提取4个主成分是可以基本反映全部指标的信息,所以决定用4个新变量来代替原来的
18、9个变量。但这两个新变量的表达还不能从输出窗口中直接得到,因为“Component Matrix”是指初始因子载荷矩阵,每一个载荷量表示主成分与对应变量的相关系数。用表5(主成分载荷矩阵)中的数据除以主成分相对应的特征值开平方根便得到4个主成分中每个指标所对应的系数2。将初始因子载荷矩阵中的4列数据输入(可用复制粘贴的方法)到数据编辑窗口(为变量B1、B2、B3、B4),然后利用“中的”进行计算,见图8。在Compute Variable对话框中输入“A1=B1/SQR(4.138)” 注:第二主成分SQR后的括号中填1.800、第三主成分SQR后的括号中填1.110、第三主成分SQR后的括号
19、中填0.704,即可得到特征向量A1(见图9)。同理,可得到特征向量A2、A3、A4。求得A1A4四个特征向量。图9 进行计算将得到的特征向量与标准化后的数据相乘,然后就可以得出主成分得分值。将前面9个指标转换成、四个指标来反映地区的产业结构转换能力,、的线性组合为:以每个主成分所对应的特征值占所提取主成分总的特征值之和的比例作为权重计算主成分综合评价模型:其中表示第主成分因子的特征值表8 各地区产业结构转换能力主成分分析得分24 对结果进行分析和总结对得出的综合主成分(评价)值,我们可用实际结果、经验与原始数据做聚类分析进行检验,对有争议的结果,可用原始数据做判别分析解决争议,也可以从中发现
20、不同的问题,提出相应的解决方法。本部分内容不再做陈述。可以参考检索相关文章学习如何对分析结果进行结实,以及如何利用分析结果说明问题。以上内容的参考文献:1 高洪深.区域经济学M.北京:中国人民大学出版社,2002.82 贺灿飞. 中国地区产业结构转换比较研究 J . 经济地理, 1996 (1) : 68 - 743 于淑艳,荣晓华. 辽宁产业结构转换能力比较分析J.工业技术经济,2004(6):94 - 974 林海明,张文霖.主成分分析与因子分析详细的异同和SPSS软件J.统计研究2005(3)第四节 论文实例本文发表在中国科技论文在线上;引用时的格式: 佘延双,沙景华. 我国产业结构转换
21、能力的区域比较分析. 中国科技论文在线(). 2006年4月.我国产业结构转换能力的区域比较分析佘延双,沙景华(中国地质大学 人文经管学院,北京 100083)摘要:本文根据区域经济学和产业经济学理论,阐述了影响产业结构转换能力的一般因素。运用主成分分析方法,选取9项指标对我国各省的产业结构转换能力进行比较和分析。提出提高产业结构转换能力、推动产业优化升级的对策和建议。关键词:地区产业结构 转换能力 政策 主成分分析China industrial structure transformation ability region comparative analysisSHE Yan-shuan
22、g,SHA Jing-hua(School of humanities and Economic Management,China University of Geosciences,Beijing 100083,China)Abstract: This paper elaborated the general factor influencing industrial structure transformation ability, according to the regional economics and the industrial economics theory. Using
23、the principal components analysis method, selects 9 targets to carry on the comparison and analysis to our country various provinces industrial structure transformation ability. Proposed countermeasure and policy suggestion on how to enhance the industrial structure transformation ability and promot
24、e industry development and optimization.Key words: the area industrial structure;industrial structure transformation ability;Policy; principal components analysis地区的经济发展同产业结构的转换存在密切的关系,而地区的产业结构转换能力为产业结构的转换提供了必要的基础和条件。研究和比较地区产业结构转换能力,有助于了解区域产业结构所处的水平、相对变动和发展潜力;对制定地区产业发展策略,促进产业结构的优化升级和提高地区经济发展水平有现实意义。
25、1 影响产业结构转换能力的一般因素产业结构转换能力是指产业结构适应市场变化和保持地区经济持续、稳定、协调增长而向高级化调整、演进的可能条件1。是否具备良好的转换能力,反映了该地区产业结构的综合素质和潜力,对当地经济的持续、健康发展至关重要。影响产业结构转换能力的因素很多, 一切影响生产要素和部门生产条件的因素, 最终都会不同程度地影响产业结构及其转换2。可以概括为三个主要的方面:需求因素、供给因素、对外贸易发展水平因素。从需求角度看,地区的需求水平、需求规模等需求因素拉动了地区产业结构的变动。一个地区的社会经济发展水平越高,消费层次越高,消费结构变化的越快,对地区产业结构变动的压力越大。供给推
26、动因素主要包括技术创新能力、积累能力和供给弹性。技术创新能力是推动产业结构转换的源动力3。地区的创新能力越强,产业结构的转换动力越大。高的投资与储蓄,高的供给弹性为产业结构的转换提供了空间。 随着生产的国际分工和国际贸易的发展,地区产业结构的变动的转换越来越多与其开放程度、参与国际分工的地位有了很大的联系。所以一个地区的对外贸易因素也很大程度上影响了地区的需求与供给,进而影响产业产业结构的变动和转换能力。2 产业转换能力评价的指标的选取产业结构转换能力是一个综合概念,任何一个单一的指标都不可能全面衡量一个地区产业结构转换能力,因此,要从整体上衡量某一地区的产业结构转换能力,应选择多个指标综合评
27、价4。根据以上影响因素选取以下指标进行分析(见表1):供给推动力因素选取城镇单位每万名职工拥有专业技术人员数(X1)指标反映创新能力;选取投资率(X2)、人均GDP(X3)、GDP增长率(X4)反映地区的积累能力;选取第二产业占GDP的比重(X5)指标反映供给弹性。需求压力因素方面,选取居民消费水平(X6)代表地区的消费求的规模水平;用城镇居民非食品支出占消费支出的比重(X7)和农村居民非食品支出占生活消费支出比重(X8)放映满足基本生活必需后的需求层次。用外贸依存度(X9)反映对外贸易发展水平。3 用主成分分析法评价各地区产业结构转换能力运用主成分分析法对区域产业结构转换能力评价指标进行处理
28、。调用SPSS12.0统计软件对9个指标进行主成分分析得主成分因子的特征值、贡献率、累积贡献率及其因子载荷(表2)。本文根据主成分对应的累积贡献率大于85%的原则选取前4个主成分因子。从载荷矩阵中可以看出在第一个主成分中人均GDP(X3)、GDP增长率(X4)、居民消费水平(X6)、农村居民非食品支出占生活消费支出比重(X8)以及外贸依存度(X9)载荷较大,可以作为反映地区经济发展水平的因子,第二个主成分中第二产业占GDP的比重(X5)和城镇居民非食品支出占消费支出的比重(X7)载荷较大,可以作为反映地区产业结构和城镇需求层次的因子。 第三个主成分中投资率(X2)载荷较大,可以作为反映地区投资
29、水平的因子。第四主成分因子中每万名职工拥有专业技术人员数(X1)载荷较大可以反映地区创新能力。从主成分因子贡献率来看,前四个因子贡献率为45.924%、20.197%、12.398%、7.744%,积贡献率大于86.263%。产业结构的转换能力主要由地区的社会经济发展水平、产业结构特征和城镇需求层次、投资水平和地区的创新能力因素反映出来。对原始数据进行标准化处理计算出各地区的综合得分(表3),负分值不表示产业结构转换能力差,评价分值只是反映了产业结构转换能力的相对强弱。F1反映地区经济发展水平;F2反映地区产业结构和城镇需求层次;F3反映地区投资水平;F4反映地区创新能力;F为转换能力综合得分
30、。由表3和表4可以看出产业结构转换能力综合评价得分排名前六的有上海、北京、天津、内蒙古、浙江、山东,反映这些地区产业结构具有比较强的转换能力,产业综合素质和潜力具有相对优势;其中内蒙古的投资率、人均GDP、GDP增长率等指标较高,反映出地区特殊的历史和环境条件;江苏、山西等19个省份产业结构转换能力处于中等水平;低于全国平均水平的有6个。其中反映社会经济发展水平的第一主成分因子F1分数较高的有上海、北京、天津、广东和浙江。反映地区的产业结构和城镇需求层次的第二主成分因子F2得分较高的有内蒙、山西、山东和陕西。反映投资水平的第三主成分因子F3相对分值高的有西藏、内蒙古、宁夏、青海和北京,投资率较
31、高为这些地区产业结构转换能力的提高做出了大的贡献。反映地区的创新能力第四主成分因子F4较高的有北京、湖南、广西、云南等地区。从这些分析我们可以看到产业结构转换能力影响因素的在不同地区的一些差异。这些差别为找出地区之间差距,提高转换能力、推动产业升级和经济水平的提高提供了参考。根据不同地区指标的强弱特征,不断提高相对薄弱的方面,最终实现产业结构不断向更高层次转换。4 提高产业转换能力的对策和建议经济发展水平高、综合实力雄厚的地区,其内部推动产业结构适时调整和顺利升级的能力比较强,具有促进当地经济全面发展的综合优势。政策环境、自然资源、制度因素对产业结构的转换升级同样具有很大影响。针对本文影响产业
32、结构转换能力的主要因素的分析,提高地区产业结构转换能力具体政策建议如下:投资率在很多地区对于综合得分的贡献较大,所以扩大投资一方面可以促进地区产业结构的变动,另一方面有助产业结构转换能力的提高。在政策上中部和西部一方面鼓励通过扩大区域内部投资增加地区的积累能力,另一方面,通过吸引外部资金的进入来增加区域内部的积累能力。 创新能力对于地区产业结构转换能力的提高也有着较大的推动作用。全国各地区在政策上一方面注重人才建设,包括教育投入和人力资源的引进,另一方面要扩大科技投入占GDP的比重以及技术市场化、产品市场化的推广,鼓励企业科技活动的投入,给予企事业单位的科技活动和科技人员的培养和引进政策上的鼓
33、励。对外贸易发展水平能够反映地区产业结构的转换能力,对外贸易发展水平的提高同样可以达到促进产业结构的转换和提高转换能力的双重效果。在政策方面,鼓励对外贸易的发展,增强地区的开放程度。对外贸易政策应当同投资政策相互配合,重点鼓励与对外贸易相关的产业部门,特别是工业各部门的发展。发展第二产业,特别是制造业。通过发展第二产业,提高第二产业在三次产业中的比重,促进区域经济的发展,提高产业结构的转换能力,加快产业结构的优化升级。在政策上,给予适合本地区特定状况的工业部门相协调政策条件,以形成具有比较优势和竞争能力的产业集群。建设良好的金融、财政和基础设施,吸引投资,促进科技产业的发展。通过发展高新技术产
34、业,满足基础产业和传统产业的优化和升级的需要,实现劳动生产力的提高和社会经济的稳定、高速发展。改善需求结构,充分发挥需求拉动对产业结构转换的作用。从提高人均收入和引导消费两方面入手。在政策上通过发展第三产业促进就业,提高居民收入水平;通过财政、货币政策、消费政策引导和刺激消费。参考文献:1 高洪深.区域经济学M.北京:中国人民大学出版社,2002.229页2 于淑艳,荣晓华辽宁产业结构转换能力比较分析J工业技术经济,2004,23(3):94-973 高志刚基于主成份分析的区域产业结构转换能力评价以新疆为例J生产力研究,2003,1:151-1524 贺灿飞.中国地区产业结构转换比较研究J.经
35、济地理,1996,16(3):68 - 745 中国统计年鉴编辑部中国统计年鉴J北京:中国统计出版社,2005第五节 因子分析概述因子分析与主成分分析一样,也是多元统计分析中常用的一种分析方法。其基本思想是通过研究众多变量之间的内部依赖关系,寻找这些数据的基本结构,并用少数几个被称为公因子的不可观测变量,来表示基本数据结构。虽然因子分析与主成分分析常常可以解决同类问题,但两个是完全不同的多元统计方法。主成分分析从解释变量的方差出发,并假定变量的方差能够完全被主成分结实。而因子分析法则从分析变量的相关关系出发,并假定变量间的相关关系能够完全被公因子解释,而变量的方差未必能够完全被公因子解释。只有
36、当方差为1时,主成分分析法和因子分析法的实质才一样。当公因子方差较小时,主成分解与公因子解的差别才较为明显。在经济学等很多领域的研究中,描述某个对象的属性时,反映其特征的指标可能很多,但这些指标之间往往具有很强的相关性,使研究工作复杂。运用因子分析,可以从放映某些对象的众多变量中,提取几个公因子,每个公因子代表一种重要的影响,抓住这些公因子,既可以帮助我们了解影响研究对象的主要因素,又可以简化数据结构,确定综合评价数学模型的权重,从而计算出综合评价侄。数学模型(暂时略)第六节 因子分析在SPSS中的操作步骤进行主成分分析在SPSS(统计软件)中主要步骤如下:1、指标数据标准化(SPSS软件自动
37、执行);2、指标之间的相关性判定;3、确定提取因子个数m;5、公因子Fi命名;6、因子分析与综合主成分(评价)值。第七节 应用因子分析法分析东北资源型城市产业结构(一)选取指标建立评价体系在本例子中我们仍然分析产业结构转换能力,其基本理论与第三节中例子相同,这里不详细叙述。根据理论建立评价指标体系模型,结合黑龙江和辽宁的实际, 选取如下指标对东北地区12个地级以上资源型城市(包括其辖区)产业结构转换能力进行分析: X1:社会劳动生产率、X2:投资率、X3:人均GDP、X4:GDP增长率、X5:居民消费水平、X6:城镇化率、X7:第二产业占GDP的比重、X8:外贸依存度。表9 东北资源型城市产业
38、结构转换能力评价指标体系分析数据来源于黑龙江省统计年鉴、辽宁统计年鉴、中国统计年鉴。见表10。表10 东北资源型城市主要指标社会劳动生产率投资率人均地区生产总值 GDP增长率居民消费水平城镇化率第二产业占GDP的比重外贸依存度鸡 西28272.1149.48361002810.96888.60177.2841.43.9029鹤 岗28934.2837.1432949612.24940.02777.1444.10.5976双 鸭 山23809.2340.4669904714.44694.03569.8643.55.7271大 庆95173.4123.98424766710.27181.30576
39、.1384.60.8346伊 春28689.2818.1082838710.36365.96388.5545.44.0315七 台 河26558.8238.097611019135731.51682.7353.20.3261鞍山233398.226.9629066.7416.1525450.648659.213.6015抚顺121517.745.1916651.8715.0585765.718160.412.5719本溪116785.552.7118748.414.0554166.8582459.327.2858阜新70592.5541.556487.81820.2326344.6576839
40、.22.6619盘锦92187.7938.4029590.698.1688151.2019268.54.8978葫芦岛127093.145.5110777.3718.0445629.4871850.625.1563(二)因子分析在SPSS中的具体操作步骤11 将数据导入到SPSS软件中将数据导入到SPSS软件中的方法第三节已经叙述。见图10。图10 将数据导入到SPSS软件中12 在SPSS软件进行因子分析操作选取中的中的选项,见图11。会跳出图12选项框,按图12对参数进行设置。图11 进行因子分析图11 进行因子分析的参数设置最后选择,运行软件进行分析。我们会看到两个变化,在主窗口中,会出
41、现FAC1到FACn的分值,这是我们要用到的因子得分分值见图12;在结果输出窗口,我们可以找到表11、表12和表13。图12 因子分析各因子得分数值表11 因子相关系数矩阵表12 方差分解公因子提取分析表表13 旋转后的因子载荷矩阵对于表11(因子相关系数矩阵进)行分析与第三节的分析相同,比如我们可以看出人均GDP(X3)与城镇化率(X7)存在非常显著的相关性。对表12(方差分解公因子提取分析表)进行分析,同样可以确定提取因子的个数。提取原则和主成分分析一样:第一个是公因子对应的特征值大于1的前m个公因子;第二个是前m个主成分累计贡献率大于85%。 在本节的例子中,前3个公因子的特征值大于1,
42、且累计贡献率达到87.699%,同时满足两个条件,所以选择提取3个公因子非常合适。否则要返回前面的操作,选择提取更多的公因子,进行比较分析最终来确定,在第三节中已经叙述,这里不再详细叙述。分析表13(旋转后的因子载荷矩阵)看每个公因子主要反映了哪些指标的信息,并可以为这些公因子命名。由表13(旋转载荷矩阵)可以看出在第一个公因子上人均GDP (X3)、居民消费水平(X5)、:第二产业占GDP的比重(X7)载荷较大,这些指标反映了经济发展水平和工业化程度;第二个公因子上社会劳动生产率(X1)与GDP增长率(X4)载荷较大,反映了技术水平增长速度;第三公因子投资率(X2)与外贸依存度(X8)载荷较
43、大,反映了地区的投资水平与外贸发展水平。图12中的因子分析各因子得分数值就是我们计算出来的上面各个公因子的得分。利用特征值计算各个公因子的权重算出综合得分。见表14。表14 因子得分及综合得分 到此,我们完成了应用公因子分析方法对东北资源型城市进行多指标分析的综合评价,对结果的分析不再陈述,大家可以参考下一节论文的案例。第八节 因子分析论文实例本文发表在中国矿业上;引用时的格式: 沙景华,佘延双东北资源型城市产业结构转换比较研究J中国矿业,2006,15(8):47 东北资源型城市产业结构转换比较研究沙景华 佘延双(中国地质大学人文经管学院北京 100083)摘要:本文依据产业经济学及区域经济
44、学的理论,运用因子分析方法,分析东北地区12座资源型城市的产业结构转换能力,并对城市产业结构转换的速度和方向进行比较分析。根据不同资源型城市的资源特征和历史差异提出资源型城市产业结构转换升级的对策与建议。关键词:资源型城市 产业结构 转换能力 因子分析NORTHEAST RESOURCES CITY INDUSTRIAL STRUCTURE TRANSFORMATION COMPARIATION RESEARCHSha Jing-hua She Yan-shuang ( Humanities and Management School,China University of Geoscienc
45、esBeijing,100083,China)Abstract: This paper analyzes the industrial structure transformation ability in the northeast area 12 resources cities by the method of factor analysis, basing on the industrial economics and the regional economics theory. And carry on comparative analysis on the speed and the direction in those cities on industrial structure transform. According to the different resources city resources characteristic and the historical difference proposed some countermeasure and the policy suggestion on industrial structure transformation and promo
限制150内