26~28 何时获得最大利润、最大面积是多少A(7页DOC).docx
《26~28 何时获得最大利润、最大面积是多少A(7页DOC).docx》由会员分享,可在线阅读,更多相关《26~28 何时获得最大利润、最大面积是多少A(7页DOC).docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、最新资料推荐2.62.8 何时获得最大利润、最大面积是多少、二次函数与一元二次方程(A卷)(50分钟,共100分)班级:_ 姓名:_ 得分:_ 发展性评语:_一、请准确填空(每小题3分,共24分)1.如果抛物线y=2x2+mx3的顶点在x轴正半轴上,则m=_.2.二次函数y=2x2+x,当x=_时,y有最_值,为_.它的图象与x轴_交点(填“有”或“没有”).3.已知二次函数y=ax2+bx+c的图象如图1所示.这个二次函数的表达式是y=_;当x=_时,y=3;根据图象回答:当x_时,y0.图1图24.某一元二次方程的两个根分别为x1=2,x2=5,请写出一个经过点(2,0),(5,0)两点二
2、次函数的表达式:_.(写出一个符合要求的即可)5.不论自变量x取什么实数,二次函数y=2x26x+m的函数值总是正值,你认为m的取值范围是_,此时关于一元二次方程2x26x+m=0的解的情况是_(填“有解”或“无解”).6.某一抛物线开口向下,且与x轴无交点,则具有这样性质的抛物线的表达式可能为_(只写一个),此类函数都有_值(填“最大”“最小”).7.半径为r的圆,如果半径增加m,那么新圆的面积S与m之间的函数关系式是_.8.如图2,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA为1 m,球路的最高点B(8,9),则这个二次函数的表达
3、式为_,小孩将球抛出了约_米(精确到0.1 m).二、相信你的选择(每小题3分,共24分)9.关于二次函数y=ax2+bx+c的图象有下列命题,其中是假命题的个数是( )当c=0时,函数的图象经过原点; 当b=0时,函数的图象关于y轴对称; 函数的图象最高点的纵坐标是;当c0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根( )A.0个 B.1个 C.2个 D.3个10.某产品进货单价为90元,按100元一个售出时,能售500个,如果这种商品涨价1元,其销售额就减少10个,为了获得最大利润,其单价应定为( )A.130元; B.120元 C.110元; D.100元11.已
4、知抛物线y=ax2+bx+c如图3所示,则关于x的方程ax2+bx+c8=0的根的情况是A.有两个不相等的正实数根; B.有两个异号实数根;C.有两个相等的实数根;D.没有实数根.12.抛物线y=kx27x7的图象和x轴有交点,则k的取值范围是( )A.k;B.k且k0; C.k;D.k且k013.如图4所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=x m,长方形的面积为y m2,要使长方形的面积最大,其边长x应为( )A. m B.6 m C.15 m D. m 图3图4 图5 14.二次函数y=x24x+3的图象交x轴于A、B两点,交y轴于点C,
5、ABC的面积为( )A.1 B.3 C.4 D.615.无论m为任何实数,二次函数y=x2+(2m)x+m的图象总过的点是( )A.(1,0);B.(1,0)C.(1,3) ;D.(1,3)16.为了备战2008奥运会,中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门横梁底侧高)入网.若足球运行的路线是抛物线y=ax2+bx+c(如图5所示),则下列结论正确的是( )a a0 0b12aA. B. C. D.三、考查你的基本功(共20分)17.(10分)某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2628 何时获得最大利润、最大面积是多少A7页DOC 26 28 何时 获得 最大 利润 面积 是多少 DOC
限制150内