相似三角形的判定定理及练习(共10页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《相似三角形的判定定理及练习(共10页).doc》由会员分享,可在线阅读,更多相关《相似三角形的判定定理及练习(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形2、相似三角形对应边的比叫做相似比3、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似强调:定理的基本图形有三种情况,如图其符号语言:DEBC,ABCADE;这个定理是用相似三角形定义推导出来的三角形相似的判定定理它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;有了预备定理后,在解题时不但要想到 “见平行,想比例”,还要想到“见平行,想相似”(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果
2、一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。例1、已知:如图,1=2=3,求证:ABCADEABCDEF例2、如图,E、F分别是ABC的边BC上的点,DEAB,DFAC ,求证:ABCDEF. 判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。简单说成:两边对应成比例且夹角相等,两三角形相似例1、ABC中,点D在AB上,如果AC2=ADAB,那么ACD与ABC相似吗?说说你的理由例2、如图,点C、D在线段AB上,PCD是等边三角形。(1)当AC、CD、DB满足怎样的关系时,ACPPDB?(2
3、)当ACPPDB时,求APB的度数。判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形相似。简单说成:三边对应成比例,两三角形相似强调:有平行线时,用预备定理;已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;已有两边对应成比例时,可考虑利用判定定理2或判定定理3但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似例1、已知:如图,在正方形ABCD中,P是BC上的点,且BP3PC,Q是CD的中点求证:ADQQCP例2、如图,ABBD,CDBD,P为BD上一动点
4、,AB=60 cm,CD=40 cm,BD=140 cm,当P点在BD上由B点向D点运动时,PB的长满足什么条件,可以使图中的两个三角形相似?请说明理由.例3、已知:AD是RtABC中A的平分线,C=90,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。求证:(1)AMENMD (2)ND2=NCNB强调:由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似;如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似 三角形 判定 定理 练习 10
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内