第四讲-立体几何题型归类总结(共13页).doc
《第四讲-立体几何题型归类总结(共13页).doc》由会员分享,可在线阅读,更多相关《第四讲-立体几何题型归类总结(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第四讲 立体几何题型归类总结一、考点分析基本图形1棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。四棱柱 底面为平行四边形 平行六面体 侧棱垂直于底面 直平行六面体 底面为矩形 长方体 底面为正方形 正四棱柱 侧棱与底面边长相等 正方体2. 棱锥棱锥有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 正棱锥如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。3球球的性质:球心与截面圆心的连线垂直于截面;(其中,球心到截面的距离为d、球
2、的半径为R、截面的半径为r)球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.注:球的有关问题转化为圆的问题解决.球面积、体积公式:(其中R为球的半径)平行垂直基础知识网络平行关系平面几何知识线线平行线面平行面面平行垂直关系平面几何知识线线垂直线面垂直面面垂直判定性质判定推论性质判定判定性质判定面面垂直定义1.2.3.4.5.平行与垂直关系可互相转化异面直线所成的角,线面角,二面角的求法1求异面直线所成的角:解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二证:证
3、明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行;三计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角:关键找“两足”:垂足与斜足解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用);二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。3求二面角的平面角解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证:证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。二、典型例题考点一:三视
4、图2 2 侧(左)视图 2 2 2 正(主)视图 1一空间几何体的三视图如图1所示,则该几何体的体积为_.俯视图 第1题2.若某空间几何体的三视图如图2所示,则该几何体的体积是_.第2题 第3题3一个几何体的三视图如图3所示,则这个几何体的体积为 .4若某几何体的三视图(单位:cm)如图4所示,则此几何体的体积是 .3正视图俯视图112左视图a 第4题 第5题5如图5是一个几何体的三视图,若它的体积是,则 .6已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是 .2020正视图20侧视图101020俯视图 7.若某几何体的三视图(单位:)如图所示,则此几何体
5、的体积是 8.设某几何体的三视图如图8(尺寸的长度单位为m),则该几何体的体积为_m3。 俯视图正(主)视图侧(左)视图2322第7题 第8题9一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_.图910.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图10所示(单位cm),则该三棱柱的表面积为_.俯视图正视图 图1011. 如图11所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为_. 图图11 图12 图1312. 如图12,一个空间几何体的主视图和左视图都是边长为1的正
6、三角形,俯视图是一个圆,那么几何体的侧面积为_. 13.已知某几何体的俯视图是如图13所示的边长为的正方形,主视图与左视图是边长为的正三角形,则其表面积是_.14.如果一个几何体的三视图如图14所示(单位长度: ), 则此几何体的表面积是_.图1415一个棱锥的三视图如图图9-3-7,则该棱锥的全面积(单位:)_. 正视图 左视图 俯视图图1516图16是一个几何体的三视图,根据图中数据,可得该几何体的表面积是_.俯视图正(主)视图侧(左)视图2322图16 图1717.如图17,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为
7、_.18.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图9-3-14所示,则这个棱柱的体积为_.图18考点二 体积、表面积、距离、角注:1-6体积表面积 7-11 异面直线所成角 12-15线面角1. 将一个边长为a的正方体,切成27个全等的小正方体,则表面积增加了_.2. 在正方体的八个顶点中,有四个恰好是正四面体的顶点,则正方体的表面积与此正四面体的表面积的比值为_.3设正六棱锥的底面边长为1,侧棱长为,那么它的体积为_.4正棱锥的高和底面边长都缩小原来的,则它的体积是原来的_.5已知圆锥的母线长为8,底面周长为6,则它的体积是 .6.平行六面体的体积为30,则四面体的体积等于 .
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四 立体几何 题型 归类 总结 13
限制150内