2022年八年级几何辅助线专题训练.docx
《2022年八年级几何辅助线专题训练.docx》由会员分享,可在线阅读,更多相关《2022年八年级几何辅助线专题训练.docx(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选学习资料 - - - - - - - - - 学习必备 欢迎下载常见的帮助线的作法1. 等腰三角形“ 三线合一” 法 利用“ 三线合一” 的性质解题:遇到等腰三角形,可作底边上的高,2. 倍长中线 :倍长中线, 使延长线段与原中线长相等,构造全等三角形3. 角平分线在三种添帮助线 :(1)可以自角平分线上的某一点向角的两边作垂线,(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形; (3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点, 然后从这两点再向角平分线上的某点作边线,构造一对全等三角形;4. 垂直平分线联结线段两端: 在垂直平分线上的某点向
2、该线段的两个端点作连线,出一对全等三角形;5. 用“ 截长法” 或“ 补短法” : 遇到有二条线段长之和等于第三条线 段的长,6. 图形补全法 :有一个角为 60 度或 120 度的把该角添线后构成等边 三角形 . 7. 角度数为 30 度、 60 度的作垂线法 :遇到三角形中的一个角为 30 度或 60 度,可以从角一边上一点向角的另一边作垂线,目的是构成 30-60-90 的特别直角三角形,然后运算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角;造边、角之间的相等条件;从而为证明全等三角形创8. 面积方法 :在求有关三角形的定值一类的问题时,常把某点到原 三角形各顶点的线段连
3、接起来,利用三角形面积的学问解答一、 等腰三角形“ 三线合一” 法名师归纳总结 - - - - - - -第 1 页,共 25 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载1.如图,已知 ABC 中, A90,ABAC,BE 平分 ABC ,CEBD 于 E,求证: CE= BD. 中考连接:(2022.扬州,第 7 题, 3 分)如图,已知AOB=60,点 P 在边 OA 上,OP=12,点 M,N 在边 OB 上, PM=PN,如 MN=2,就 OM=()AA3B4C5D6二、倍长中线(线段)造全等例 1、(“ 期望杯” 试题)已知,如图ABC中, AB=5,AC
4、=3,就中线 AD的取值范畴是 _. BDC例 2、如图, ABC中,E、F 分别在 AB、AC上,DEDF,D是中点, 试比较 BE+CF与 EF的大小 . AEFB D C例 3、如图, ABC中, BD=DC=AC,E 是 DC的中点,求证: AD平分 BAE. ABDEC中考连接:名师归纳总结 - - - - - - -第 2 页,共 25 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载(09 崇文)以的两边 AB、AC 为腰分别向外作等腰 Rt ABC 和等腰 Rt ACE ,BAD CAE 90 , 连接 DE,M、N 分别是 BC、DE 的中点探究: AM
5、 与 DE的关系 ( 1)如图 当 ABC 为直角三角形时,AM 与 DE 的位置关系是,线段 AM 与 DE 的数量关系是;(2)将图中的等腰 Rt ABD 绕点 A沿逆时针方向旋转 0 90后,如图所示,(1)问中得到的两个结论是否发生转变?并说明理由三、借助角平分线造全等1、如图,已知在ABC中, B=60 , ABC的角平分线 AD,CE相交于点 O,求证: OE=OD AEOBD 2、如图,已知点C名师归纳总结 C 是MAN 的平分线上一点, CEAB 于 E,B、D 分别在第 3 页,共 25 页- - - - - - -精选学习资料 - - - - - - - - - 学习必备
6、欢迎下载AM 、AN 上,且 AE= (AD+AB ).问: 1 和 2 有何关系?中考连接:20XX 年北京 如图, OP 是 MON 的平分线,请你利用该图形画一对以 OP所在直线为对称轴的全等三角形;请你参考这个作全等三角形的方法,解答以下问题:(1)如图,在ABC 中, ACB 是直角, B=60 , AD、CE 分别是BAC、BCA 的平分线, AD、CE 相交于点 F;请你判定并写出 FE 与FD 之间的数量关系;(2)如图,在 ABC 中,假如 ACB 不是直角, 而1中的其它条件不变,请问,你在 1中所得结论是否仍旧成立?如成立,请证明;如不成立,B 请说明理由;M B O P
7、 E F D E F D 图N A 图C A 图C 四, 垂直平分线联结线段两端名师归纳总结 1. ( 2022.广西贺州,第17 题 3 分)如图,等腰ABC 中, AB=AC,第 4 页,共 25 页- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载DBC=15 ,AB 的垂直平分线 MN 交 AC 于点 D,就 A 的度数是2、如图, ABC中,AD平分 BAC,DGBC且平分 BC,DEAB于 E,DFAC 于 F. (1)说明 BE=CF的理由;(2)假如 AB=a ,AC=b ,求 AE、BE的长 . ABEGCFD中考连接:(20XX
8、年广东汕尾,第 19 题 7 分)如图,在 Rt ABC 中, B=90 ,分别以点 A、C 为圆心,大于 AC 长为半径画弧,两弧相交于点 M 、N,连接 MN ,与 AC、BC 分别交于点 D、E,连接 AE(1)求 ADE;(直接写出结果)(2)当 AB=3,AC=5 时,求ABE 的周长补充:尺规作图过直线外一点做已知直线的垂线五、截长补短名师归纳总结 1、如图,ABC 中,AB=2AC,AD平分BAC ,且 AD=BD,求证: CDAC 第 5 页,共 25 页- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载ACBD2、如图, AD BC
9、,EA,EB分别平分 DAB,CBA,CD过点 E,求证 ;ABAD+BC;A DEBC03、如图,已知在 ABC 内,BAC 60,C 40 0,P,Q分别在 BC,CA上,并且 AP,BQ分别是 BAC ,ABC 的角平分线;求证: BQ+AQ=AB+BP ABQP4、如图,C在四边形 ABCD中, BCBA,ADCD,BD平分ABC ,求证:AC1800ADBC5. 如图,已知正方形 ABCD 中,E 为 BC 边上任意一点,AF 平分 DAE 求证: AEBEDF名师归纳总结 - - - - - - -第 6 页,共 25 页精选学习资料 - - - - - - - - - 学习必备
10、欢迎下载6.如图, ABC 中, ABC=60 ,AD 、CE 分别平分 BAC ,ACB ,判定 AC 的长与 AE+CD 的大小关系并证明 . 7.如图,Rt ABC 中, ACB=90 ,CDAB 于 D,AF 平分 CAB 交 CD 于 E,交 CB 于 F,且 EG AB 交 CB 于 G,判定 CF 与 GB 的大小关系并证明;A D六、综合名师归纳总结 BEF1、正方形 ABCD中,E 为 BC上的一点, F 为 CD上的一点,C第 7 页,共 25 页- - - - - - -精选学习资料 - - - - - - - - - 学习必备,欢迎下载BC AC 上,且 BMCN ,A
11、MBE+DF=EF,求 EAF的度数 . N 分别在2、如图, ABC 为等边三角形, 点M与 BN 交于 Q 点;求AQN 的度数;CD , ABBC ,ABC120,3、已知四边形 ABCD 中, ABAD , BCMBN 60,MBN 绕 B 点旋转,它的两边分别交 AD,DC(或它们的延长线)于 E,F当MBN 绕 B 点旋转到 AE CF 时(如图 1),易证 AE CF EF 当MBN 绕 B 点旋转到 AE CF 时,在图 2 和图 3 这两种情形下,上述结论是否成立?如成立,请赐予证明;如不成立,线段 AE,CF, EF 又有怎样的数量关系?请写出你的猜想,不需证明BAMBAM
12、ADEEEBCFNDCFNDFCN(图 1)(图 2)(图 3)MBM4、 DEFA为等腰 Rt ABC 斜边 AB的中点, DMDN,DM,DN分别交 BC,CA于点 E,F;C(1) 当MDN 绕点 D转动时,求证 DE=DF;A(2) 如 AB=2,求四边形 DECF的面积;名师归纳总结 N第 8 页,共 25 页- - - - - - -精选学习资料 - - - - - - - - - 5、在等边学习必备欢迎下载M 、N,D 为ABCABC 的两边 AB 、AC 所在直线上分别有两点外一点,且 MDN 60 , BDC 120 ,BD=DC. 探究:当 M、N 分别在直线 AB 、AC
13、 上移动时, BM 、NC、MN 之间的数量关系及 AMN 的周长 Q 与等边 ABC 的周长 L 的关系图 1 图 2 图 3 (I)如图 1,当点 M、N 边 AB、AC 上,且 DM=DN 时, BM 、NC、MN之间的数量关系是; 此时 QL(II)如图 2,点 M 、N 边 AB 、AC 上,且当 DM;DN 时,猜想( I)问的两个结论仍成立吗?写出你的猜想并加以证明;(III ) 如图 3,当 M 、N 分别在边 AB、CA 的延长线上时,如 AN= x ,就 Q= (用 x 、L 表示)中考连接:(2022.抚顺 第 25 题( 12 分)名师归纳总结 已知: Rt ABC R
14、t ABC , ACB=ACB=90 , ABC=ABC=60 ,Rt ABC 可绕点 B 旋转,设旋转过程中直线CC 和 AA 相交第 9 页,共 25 页- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载于点 D(1)如图 1 所示,当点 C 在 AB 边上时,判定线段AD 和线段 AD 之间的数量关系,并证明你的结论;(2)将 Rt ABC 由图 1 的位置旋转到图 2 的位置时,(1)中的结论是否成 立?如成立,请证明;如不成立,请说明理由;(3)将 Rt ABC 由图 1 的位置按顺时针方向旋转 角(0 120),当 A、C 、 A 三点在
15、一条直线上时,请直接写出旋转角的度数参考答案与提示一、倍长中线(线段)造全等名师归纳总结 例 1、(“ 期望杯”试题)已知,如图 ABC中,AB=5,AC=3,就中线 AD的取值范畴是 _. 第 10 页,共 25 页- - - - - - -精选学习资料 - - - - - - - - - 学习必备欢迎下载BDAC解:延长 AD至 E 使 AE2AD,连 BE,由三角形性质知AB-BE 2ADAB+BE 故 AD的取值范畴是1AD4 例 2、如图,ABC中, E、F 分别在 AB、 AC上, DEDF,D是中点,试比较BE+CF与 EF的FC大小 . A解: 倍长中线 , 等腰三角形“ 三线
16、合一” 法 明显 BGFC, 延长 FD至 G使 FG2EF,连 BG,EG, E在 EFG中,留意到DEDF,由等腰三角形的三线合一知BDEGEF 在 BEG中,由三角形性质知 EGBG+BE 故: EFBE+FC 例 3、如图,ABC中, BD=DC=AC,E 是 DC的中点,求证:AD平分 BAE. ABDEC解:延长 AE至 G使 AG2AE,连 BG,DG, 明显 DGAC,GDC=ACD 由于 DC=AC,故ADC= DAC 在 ADB与 ADG中, BDAC=DG,ADAD,ADB= ADC+ACD= ADC+GDC ADG 故 ADB ADG,故有 BAD=DAG,即 AD平分
17、 BAE 名师归纳总结 - - - - - - -第 11 页,共 25 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载应用:Rt1、(09崇文二模)以的两边AB、AC为腰分别向外作等腰ABCRtABD 和 等 腰ACE ,BADCAE90 ,连接 DE,M、N分别是 BC、DE的中点探究:AM 与DE的位置关系及数量关系(1)如图 当 ABC 为直角三角形时,AM 与DE的位置关系是,线段 AM与DE的数量关系是;(2)将图中的等腰 Rt ABD 绕点 A沿逆时针方向旋转 0 90后,如图所示,(1)问中得到的两个结论是否发生转变?并说明理由解:(1)ED2AM,AM
18、ED;证明:延长AM 到 G,使MGAM,连 BG,就 ABGC 是平行四边形N H E ACBG,ABGBAC180D 又DAEBAC180ABGDAEA 再证:DAEABGDE2AM,BAGEDA延长 MN 交 DE 于 H 名师归纳总结 BAGDAH90ACFAB M C C E HDADAH90AMEDGN (2)结论仍旧成立,FA 交 DE 于点 P,并连接 BF证明:如图,延长CA 至 F,使DABA,EAAFFBAF90DAFEADD 在FAB 和EAD 中P FAAEBAFEADA 第 12 页,共 25 页BADAFABEAD(SAS)B M - - - - - - -精选学
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年级 几何 辅助线 专题 训练
限制150内