大同氢项目建议书【模板参考】.docx
《大同氢项目建议书【模板参考】.docx》由会员分享,可在线阅读,更多相关《大同氢项目建议书【模板参考】.docx(129页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、泓域咨询/大同氢项目建议书大同氢项目建议书xxx集团有限公司目录第一章 行业发展分析7一、 新型电力系统构建释放可再生能源规模制氢潜力7二、 可再生能源电解水制氢有望进入平价区间11三、 多行业深度脱碳创造氢能需求增量空间13第二章 项目概况18一、 项目名称及投资人18二、 编制原则18三、 编制依据18四、 编制范围及内容19五、 项目建设背景19六、 结论分析20主要经济指标一览表22第三章 背景及必要性25一、 可再生能源制氢是实现氢能产业低碳发展的基石25二、 政策端明确可再生能源制氢发展方向30三、 加快构建一流创新生态,孕育转型发展新动能31四、 项目实施的必要性34第四章 建设
2、方案与产品规划36一、 建设规模及主要建设内容36二、 产品规划方案及生产纲领36产品规划方案一览表36第五章 选址可行性分析38一、 项目选址原则38二、 建设区基本情况38三、 聚焦新兴产业和“六新”突破,努力构建现代产业体系40四、 以京同合作带动融入京津冀协同发展45五、 项目选址综合评价46第六章 运营模式47一、 公司经营宗旨47二、 公司的目标、主要职责47三、 各部门职责及权限48四、 财务会计制度52第七章 SWOT分析说明59一、 优势分析(S)59二、 劣势分析(W)60三、 机会分析(O)61四、 威胁分析(T)61第八章 发展规划分析65一、 公司发展规划65二、 保
3、障措施69第九章 节能方案说明72一、 项目节能概述72二、 能源消费种类和数量分析73能耗分析一览表74三、 项目节能措施74四、 节能综合评价75第十章 工艺技术方案76一、 企业技术研发分析76二、 项目技术工艺分析78三、 质量管理80四、 设备选型方案81主要设备购置一览表81第十一章 环境保护分析83一、 编制依据83二、 环境影响合理性分析83三、 建设期大气环境影响分析84四、 建设期水环境影响分析86五、 建设期固体废弃物环境影响分析86六、 建设期声环境影响分析87七、 环境管理分析88八、 结论及建议91第十二章 项目投资分析93一、 投资估算的编制说明93二、 建设投资
4、估算93建设投资估算表95三、 建设期利息95建设期利息估算表95四、 流动资金96流动资金估算表97五、 项目总投资98总投资及构成一览表98六、 资金筹措与投资计划99项目投资计划与资金筹措一览表99第十三章 经济效益分析101一、 经济评价财务测算101营业收入、税金及附加和增值税估算表101综合总成本费用估算表102固定资产折旧费估算表103无形资产和其他资产摊销估算表104利润及利润分配表105二、 项目盈利能力分析106项目投资现金流量表108三、 偿债能力分析109借款还本付息计划表110第十四章 项目风险评估112一、 项目风险分析112二、 项目风险对策114第十五章 总结评
5、价说明117第十六章 附表附件119建设投资估算表119建设期利息估算表119固定资产投资估算表120流动资金估算表121总投资及构成一览表122项目投资计划与资金筹措一览表123营业收入、税金及附加和增值税估算表124综合总成本费用估算表124固定资产折旧费估算表125无形资产和其他资产摊销估算表126利润及利润分配表126项目投资现金流量表127本报告基于可信的公开资料,参考行业研究模型,旨在对项目进行合理的逻辑分析研究。本报告仅作为投资参考或作为参考范文模板用途。第一章 行业发展分析一、 新型电力系统构建释放可再生能源规模制氢潜力大规模制氢是大规模用氢的前提,我国氢能供给结构将从化石能源
6、为主的非低碳氢向以可再生能源为主的低碳清洁氢过度。随着深度脱碳的需求增加和可再生能源电解水制氢经济性的提升,2040-2050年,可再生能源制氢在氢能供应中超过50%,我国的能源结构从传统化石能源为主转向以可再生能源为主的多元格局,可再生能源电解水制氢将成为有效供氢主体,煤制氢+CCS技术、生物制氢和太阳能光催化分解水制氢等技术成为有效补充,预计2060年我国可再生氢产量提升至1亿吨,约占氢气年度总需求的77%。受规模限制及供给端清洁化转型需求,工业副产氢可支持中短期终端氢气消费量。我国工业副产氢主要来源包括轻烃利用(丙烷脱氢、乙烷裂解)、氯碱行业、焦炉煤气提纯、合成氨醇弛放气提纯。从我国工业
7、副产氢的放空量现状来看,供应潜力可达到450万吨/年,能够支持约97万辆公客车全年运营,但存在地域分布性差异(PDH及乙烷裂解主要分布于华东及沿海地区、较大规模的氯碱厂主要分布在新疆、山东、内蒙古、上海、河北等省市,焦化厂主要分布在话内积华东地区,合成氨醇企业主要分布在山东、陕西和河南等省份)。在氢能产业发展初期,由于需求增量有限,工业副产氢接近消费市场、经济性佳、提纯技术较为成熟,是氢能供应体系的重要补充。2060年,氢气总需求量将达到1.3亿吨,受工业副产氢的产业规模限制,产量提高潜力较小;同时,钢铁、化工等工业领域需要引入无碳制氢技术替代化石能源实现深度脱碳,将从氢气供给方转变为需求方。
8、因此,随着氢能全产业链深度脱碳,工业副产氢的产量也将逐渐萎缩。电力结构清洁化趋势构筑可再生能源规模制氢的基石。“十三五”以来,煤电装机和发电量占比持续下降,太阳能及风力发电装机及发电量稳步增长。2021全国发电装机容量约23.8亿千瓦,同比+7.9%。其中,风电装机容量约3.3亿千瓦,同比+16.6%;光伏装机容量约3.1亿千瓦,同比+20.9%。2021年,全国可再生能源发电量达2.48万亿kWh,占全社会用电量的29.8%。其中,风电6526亿kWh,同比增长40.5%;光伏发电3259亿kWh,同比增长25.1%。随着“十四五”电力规划的实施,到2025年,我国风电、太阳能发电总装机及发
9、电量将达10.87亿kW、1.87万亿kWh,到2030年,我国风电、太阳能发电总装机容量将达12亿kW以上(全球能源互联网发展合作组织预估为18.25亿kW)。到2050年,清洁能源成为电源装机的增量主体,90%的电量将由水电、太阳能发电、风电、核电等清洁能源共同承担。2060年,在碳中和情境下,风电、太阳能发电总装机有望达到63亿千瓦,2021-2060年风光装机量增长近十倍。可再生能源发电成为电力供应的主体,储能需求逐步凸显。随着风光等新能源大规模接入,平抑新能源出力波动,解决新能源消纳,提升能源利用效率等需求逐渐凸显,储能技术可以提升电力系统灵活性、经济性、安全性,在以新能源为主体的新
10、型电力系统构建及改造过程中发挥重要作用。氢储能是大容量、长周期储能的唯一解决方案。各种储能方式在储能时间和储能时长上优势互补,目前应用较为广泛的电化学储能、抽水蓄能等技术只能解决电力系统的短期调节问题,且受成本等因素制约,月度调节和季度调节还存在很大障碍。氢储能的容量大、周期长,覆盖的储能周期及容量跨度广,在时间周期及储能容量上具有调节的灵活性,针对电网削峰填谷、集中式可再生能源并网等应用场景需要氢储能作为大容量长周期储能技术参与可再生能源波动性调节。氢储能目前多采用碱性电解槽技术配合高压气态储氢技术以及质子交换膜燃料电池完成可再生能源储存及电-电转化,能量转化效率有待提升。通过改善碱性电堆、
11、电极与隔膜材料,优化质子交换膜电解槽的设计和制造工艺提高可再生能源储能效率,通过提高储氢压力、开发氢气液化装备及储罐提升储氢效率,预计2025年可实现40-45%的电-电转化效率以及15-20mol/L的储氢密度。可再生能源装机的大规模发展,叠加大容量氢储能在可再生能源季节性调峰中的作用,使可再生能源规模制氢成为可能。2020年,全国可再生能源发电量达22148亿kWh,如果按1%的比例进行电解水制氢,制氢效率按照5kWh/Nm3测算,可制取氢气约40万吨/年。根据全球能源互联网发展合作组织预计,2025年风电、太阳能发电总装机容量将达到5.36亿kW、5.59亿kW;2030年风电、太阳能发
12、电总装机容量将达到8亿kW、10.5亿千瓦;2050年风电、太阳能发电总装机容量将达22亿kW、34.5亿kW;2060年风电、太阳能发电总装机容量将达25亿kW、38亿kW。按照可再生能源装机量1-15%配置电解水制氢装置,参与发电量5%-30%的季节性储能调峰比例接入电解水制氢系统,预计2025年、2030年、2050年、2060年电解水制氢效率可达到5kWh/Nm3、4.5kWh/Nm3、4kWh/Nm3、4kWh/Nm3,可再生能源制氢量将达到40万吨、500万吨、6500万吨、1亿吨氢气,能够满足节能与新能源汽车技术路线图2.0及中国氢能联盟对我国氢气需求量的预计,支撑我国清洁氢供给
13、结构需求。假设2025年、2030年、2050年、2060年的电解装置全功率运行时间分别为2000h、3000h、4500h、5000h,对应电解装置装机规模将达到0.12亿kW、0.84亿kW、6.49亿kW、8.99亿kW。氢储能已在国内外开放示范运行,国内在建项目占比较大。截止至2021年底,主要发达国家在运营氢储能设施已有9座,电解槽装机量合计17.33MW。其中,最大的两处均在德国,电解槽装机量为6000kW;另有两处氢储能设施在建,电解槽装机量合计2.8MW。我国在建和示范运行的氢储能设施共有7座。其中,位于张家口在建的“张家口200MW/800MWh氢储能发电项目”是目前全球规模
14、最大的氢储能项目,将安装80套5000kW电解槽,项目建设期为2年,预计2023年投入运行。二、 可再生能源电解水制氢有望进入平价区间电堆是电解水制氢系统的核心,成本占比最高。电解水制氢系统由电解电堆及辅助系统组成。电堆是电解反应发生的主要场所,是电解水制氢系统的核心部分,在电解系统成本中占45%;辅助系统包括电气系统、去离子水循环系统、氢气处理及纯化系统、气体冷却系统,在电解系统成本中占55%。现阶段国内AWE电解系统成本价格接近目标价格。对AWE电解系统,电堆成本主要由电极、膜片等核心部件的成本驱动,占电堆成本的57%;碱性电解槽的双极板材料使用镀镍钢,材料便宜,设计及加工简单,占电堆成本
15、的7%。根据中石化“库车绿电示范项目”招标价格,2022年我国碱性电解系统价格已降至1500元/kW。根据IRENA测算,2050年的1MW碱性电解槽电堆投资成本目标价格将小于100美元/kW;10MW碱性电解水系统的目标价格将小于200美元/kW。根据隆基氢能测算,2030、2050年,国内AWE电解槽成本将降至700-900元/kW、530-650元/kW。现阶段PEM电解系统投资成本较高,未来降幅空间有望超过70%。对PEM电解制氢系统,电堆成本主要由双极板等核心部件的成本驱动,占电堆总成本的53%,主要因为PEM双极板通常需要使用Au或Pt等贵金属涂层达到抗腐蚀的目的,如使用Ti等低廉
16、涂层替代贵金属,可实现双极板成本的大幅下降;稀有金属Ir是膜电极中阴极催化剂的重要组成部分,Ir在整个PEM电解系统中成本占比不到10%,但存在供需不平衡的问题。根据IRENA测算,对1MW碱性电解槽电堆,现阶段投资成本为400美元/kW,2050年的目标价格将小于100美元/kW;对于10MW碱性电解水系统,现阶段的投资成本约为700-1400美元/kW,2050年的目标价格将小于200美元/kW。贵金属催化剂用量及资源供给是PEM电解槽发展应解决的首要问题。按照IRENA统计,现阶段PEM电解槽Ir用量约为1.3t/GW,全球Ir金属产量约为77.5t/年,只能支持5.45.7GW/年的全
17、球装机量。根据规划,Ir的目标含量有望下降至现有水平的3/10,在不增加现有Ir产量的假设下,仅支持全球每年装机量17.518.8GW/年。因此,降低Ir金属载量或开发非Pt系(Pt,Ir)催化剂是PEM电解槽大规模发展的前提。PEM电解槽的关键金属由少数国家主导,南非供应全球70%以上的Pt以及超过全球85%的Ir,PEM电解槽的发展将与上游原材料的主要供给供应国家紧密相关。我国的贵金属资源Pt、Ir极度匮乏,PEM电解槽大规模发展所需的Pt系金属需要依赖进口。三、 多行业深度脱碳创造氢能需求增量空间碳中和背景下我国各行业减碳空间巨大。2020年,我国的温室气体排放量约125亿吨,其中二氧化
18、碳排放量约112亿吨,能源活动二氧化碳排放量约99亿吨,其中电力领域二氧化碳排放量约40亿吨,工业领域二氧化碳排放量约36.1亿吨(其中,钢铁、水泥与化工行业的二氧化碳排放量占61%),建筑与交通领域二氧化碳排放量分别约为11.5亿吨和11.2亿吨。2030年碳达峰情境下,温室气体排放量峰值不超过130亿吨,能源活动二氧化碳排放量峰值不超过105亿吨,碳汇约9亿吨;2060年实现碳中和时,我国的温室气体排放量不超过15亿吨,碳汇约15亿吨,其中能源活动二氧化碳排放量约5亿吨。能源消费的绿色转型是我国实现双碳目标的关键。中国氢能源及燃料电池产业白皮书2020提出“脱碳是本轮氢能产业发展的第一驱动
19、力”。根据中国氢能联盟预计,在2030年碳达峰情景下,我国氢气的年需求量将达3715万吨,在终端能源消费中占比约为5%,可再生氢产量约500万吨/年;在2060年碳中和情景下,我国氢气的年需求量将增至1.3亿吨左右,在终端能源消费中占比约为20%,2020-2060年氢气需求量CAGR35%。碳中和情境下工业领域用氢占比仍然最大,约7794万吨,占氢能总需求量60%;交通运输领域用氢4051万吨,占总需求量的31%,是氢能消费的最大增量;在氢发电领域,氢能为高比例可再生能源发电波动性提供消纳途径,预计约10%可再生氢通过燃料电池以电力形式回到电网,发电与电网平衡用氢600万吨,占氢气总需求的5
20、%;建筑领域以纯氢替代20%天然气供暖需求,并通过一定比例的掺氢实现脱碳,预计2060年氢气消费量将达到585万吨,占总需求的4%。交通运输领域是氢能需求的最大增量。实现碳中和需要道路交通全面电气化,航空和船运逐步替换使用零碳燃料。2015年,中国交通运输部门产生了8.439亿吨二氧化碳,占全国总排放量的9.3%,其中6.983亿吨来自道路交通。交通运输部门的碳排放年均增速保持在5%以上,成为温室气体排放增长最快的领域之一,与此同时,中国千人汽车保有量仍远低于发达国家。因此,交通运输部门能源需求量预计仍会惯性增加。道路交通的氢能需求在交通运输领域中占比最大。目前我国汽车保有量的电气化率不足3%
21、,碳中和目标要求道路交通实现全面电气化。22年Q1新能源车销量渗透率约20%,新能源商用车渗透率约5%,电气化仍处于起步阶段。中国氢能联盟预计2025年我国燃料电池汽车保有量约10万辆,2035年约120万辆,2060年增加至1100万辆(中重型燃料电池商用车750万辆,在全部中重型商用车中占比接近65%,燃料电池乘用车约15%)。结合燃料电池与动力电池技术,道路交通有望在2050年前实现净零排放。预计2060年道路交通氢气消费量3570万吨,占交通运输用氢的88%。氢能通过多种技术路线参与船运及航空领域脱碳。通过动力电池和氢燃料电池技术可实现内河和沿海船运电气化,通过生物燃料或零碳氢气合成氨
22、等新型燃料实现远洋船运脱碳。预计2030年开始推广燃料电池船,到2050年约6%的船运能源消耗将通过氢燃料电池技术实现,氢气消费量接近120万吨,2060年氢气消费量280万吨。航空领域将以生物燃料、合成燃料为主,以氢能等为辅共同实现脱碳。以氢为燃料的飞机可能成为中短途航空飞行的一种脱碳路径,目前,全世界已有多种机型正在开发和试验。在长距离航空领域,仍须依赖航空燃油,可通过生物质转化或零碳氢气与二氧化碳合成制得。预计2060年氢气消费量200万吨,提供5%左右航空领域能源需求。碳中和情境下工业领域用氢占比最大。工业是当前脱碳难度最大的终端部门,化石能源不仅作为工业燃料,还是重要的工业原料。在氢
23、冶金、合成燃料、工业燃料等行业增量需求的带动下,中国氢能联盟预计2060年工业部门氢需求量将到7794万吨,占氢能总需求的60%。传统工业中氢气需求整体呈现先微增后下降的趋势。在传统工业中,氢气是合成氨、合成甲醇、石油精炼和煤化工行业中的重要原料,小部分副产氢气作为回炉助燃的工业燃料使用。目前,工业用氢基本全部依赖化石能源制取,未来通过低碳清洁氢替代应用潜力巨大。随着石油消费量的增长和成品油品质要求的不断提升,石油炼制行业的氢气消费量有望持续增加,2030年以后,由于油品标准达到较高水平以及交通部门能源效率和电气化率持续提升,炼厂氢气消费将大幅下降,带动现有工业氢气需求量将呈现先增后降趋势,2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模板参考 大同 项目 建议书 模板 参考
限制150内