农机履带项目统计过程质量控制分析(参考).docx
《农机履带项目统计过程质量控制分析(参考).docx》由会员分享,可在线阅读,更多相关《农机履带项目统计过程质量控制分析(参考).docx(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、农机履带项目统计过程质量控制分析目录一、 项目简介3二、 控制图的基本原理7三、 控制图的观察与分析11四、 过程能力的计算和评价12五、 过程能力14六、 质量数据与分布规律16七、 过程质量控制的特点19八、 产业环境分析24九、 行业面临的机遇与挑战26十、 必要性分析29十一、 进度计划29项目实施进度计划一览表30十二、 经济效益及财务分析31营业收入、税金及附加和增值税估算表32综合总成本费用估算表33利润及利润分配表35项目投资现金流量表37借款还本付息计划表39一、 项目简介(一)项目单位项目单位:xx有限公司(二)项目建设地点本期项目选址位于xx(待定),占地面积约33.00
2、亩。项目拟定建设区域地理位置优越,交通便利,规划电力、给排水、通讯等公用设施条件完备,非常适宜本期项目建设。(三)建设规模该项目总占地面积22000.00(折合约33.00亩),预计场区规划总建筑面积35363.06。其中:主体工程22946.88,仓储工程4059.00,行政办公及生活服务设施4456.58,公共工程3900.60。(四)项目建设进度结合该项目建设的实际工作情况,xx有限公司将项目工程的建设周期确定为24个月,其工作内容包括:项目前期准备、工程勘察与设计、土建工程施工、设备采购、设备安装调试、试车投产等。(五)项目提出的理由1、符合我国相关产业政策和发展规划近年来,我国为推进
3、产业结构转型升级,先后出台了多项发展规划或产业政策支持行业发展。政策的出台鼓励行业开展新材料、新工艺、新产品的研发,促进行业加快结构调整和转型升级,有利于本行业健康快速发展。2、项目产品市场前景广阔广阔的终端消费市场及逐步升级的消费需求都将促进行业持续增长。3、公司具备成熟的生产技术及管理经验公司经过多年的技术改造和工艺研发,公司已经建立了丰富完整的产品生产线,配备了行业先进的染整设备,形成了门类齐全、品种丰富的工艺,可为客户提供一体化染整综合服务。公司通过自主培养和外部引进等方式,建立了一支团结进取的核心管理团队,形成了稳定高效的核心管理架构。公司管理团队对行业的品牌建设、营销网络管理、人才
4、管理等均有深入的理解,能够及时根据客户需求和市场变化对公司战略和业务进行调整,为公司稳健、快速发展提供了有力保障。4、建设条件良好本项目主要基于公司现有研发条件与基础,根据公司发展战略的要求,通过对研发测试环境的提升改造,形成集科研、开发、检测试验、新产品测试于一体的研发中心,项目各项建设条件已落实,工程技术方案切实可行,本项目的实施有利于全面提高公司的技术研发能力,具备实施的可行性。国家生态部宣布于2022年12月起实施非道路移动机械国四标准,北京为满足冬奥会对空气质量的要求提早于2021年12月起实施,生产商将停止生产和销售装有国三标准柴油机的工程机械、农业机械、林业机械等非道路移动机械。
5、(六)建设投资估算1、项目总投资构成分析本期项目总投资包括建设投资、建设期利息和流动资金。根据谨慎财务估算,项目总投资12565.03万元,其中:建设投资10309.76万元,占项目总投资的82.05%;建设期利息206.00万元,占项目总投资的1.64%;流动资金2049.27万元,占项目总投资的16.31%。2、建设投资构成本期项目建设投资10309.76万元,包括工程费用、工程建设其他费用和预备费,其中:工程费用8604.57万元,工程建设其他费用1424.27万元,预备费280.92万元。(七)项目主要技术经济指标1、财务效益分析根据谨慎财务测算,项目达产后每年营业收入23000.00
6、万元,综合总成本费用17816.98万元,纳税总额2410.86万元,净利润3795.19万元,财务内部收益率23.27%,财务净现值5831.34万元,全部投资回收期5.64年。2、主要数据及技术指标表主要经济指标一览表序号项目单位指标备注1占地面积22000.00约33.00亩1.1总建筑面积35363.06容积率1.611.2基底面积13200.00建筑系数60.00%1.3投资强度万元/亩288.762总投资万元12565.032.1建设投资万元10309.762.1.1工程费用万元8604.572.1.2工程建设其他费用万元1424.272.1.3预备费万元280.922.2建设期利
7、息万元206.002.3流动资金万元2049.273资金筹措万元12565.033.1自筹资金万元8360.883.2银行贷款万元4204.154营业收入万元23000.00正常运营年份5总成本费用万元17816.986利润总额万元5060.267净利润万元3795.198所得税万元1265.079增值税万元1023.0310税金及附加万元122.7611纳税总额万元2410.8612工业增加值万元8132.9913盈亏平衡点万元8069.68产值14回收期年5.64含建设期24个月15财务内部收益率23.27%所得税后16财务净现值万元5831.34所得税后二、 控制图的基本原理数据或质量特
8、性值处理的方法中,不论是频数分布表、直方图、分布的计量值、分布规律及过程能力指数等所表示的都是数据在某一段时间内的静止状态。但是,生产过程中,用静态的方法不能随时发现问题以调整生产或工作。因此,生产过程或工作现场不仅需要处理数据的静态方法,也需要能了解数据随时间变化的动态方法,并以此为依据来控制产品生产过程或工作的质量。1、控制图的基本概念控制图是对测定、记录、评估和监察过程是否处于统计控制状态的一种统计方法设计图。世界上第一张控制图是美国休哈特在1924年5月16日提出的不合格品率(P)控制图。(1)控制图的设计原理。正态性假设。3准则。小概率事件原理。小概率事件原理是指小概率的事件一般不会
9、发生。由3准则可知,数据点落在控制界限以外的概率只有0.135%,因此,生产过程正常情况下,质量特性值是不会超过控制界限的,如果超出,则认为生产过程发生异常变化。(2)控制图应用经验与理论分析表明,当生产过程中只存在正常波动时,产品或过程质量将形成典型分布,若过程正常,即分布不变,则出现点子超过UCL或LCL的概率只有0.135%左右。若过程异常,分布曲线上移或下移,产品或过程质量的分布必将偏离原来的典型分布,即,发生变化。发生这种情况的可能性很大,其概率可能为0.135%的几十至几百倍。小概率事件在一次试验中几乎不可能发生,若发生即判断异常。因此,根据典型分布是否偏离就能判断异常波动是否发生
10、,而典型分布的偏离可由控制图检出,所以,控制图上的控制界限就是区分正常波动和异常波动的科学界限,亦可分析偶然因素与异常因素对过程的影响。2、控制图的基本种类(1)常规控制图的分类。常规控制图是按产品质量的特性及其分布规律所作的分类。均值极差控制图。均值标准差控制图。中位数极差控制图。单值移动极差控制图。不合格品率控制图。不合格品数控制图。缺陷数控制图。单位缺陷数控制图。(2)按控制图的用途划分。按控制图的用途来划分,可以分为分析用控制图和控制用控制图。实施SPC分为两个阶段,一是分析阶段,二是监控阶段。在这两个阶段所使用的控制图分别被称为分析用控制图和控制用控制图。两者间的关系适应日本质量管理
11、的名言:“始于控制图,终于控制图。”所谓“始于控制图”是指对过程的分析从应用控制图对过程进行分析开始,所谓“终于控制图”是指对过程的分析结束,最终建立了控制用控制图。故根据使用的目的和用途的不同,控制图可分为分析用控制图与控制用控制图。分析用控制图。分析用控制图是根据过去数据,主要用于分析现状,涉及分析两个方面的内容,一是所分析的过程是否处于统计控制状态,二是该过程的过程能力指数是否满足要求,若经过分析后,生产过程处于非统计控制状态,则应查找原因并加以消除。控制用控制图。控制用控制图由分析控制图转化而来,当过程达到了确认的状态后,才能将分析用控制图的控制线延长作为控制用控制图。由于后者相当于生
12、产中的立法,故由前者转为后者时应有正式交接手续。这里要用到判断稳态的准则(简称判断准则),在稳定之前还要用到判断异常的准则。进入日常管理后,关键是保持所确定的状态。经过一个阶段的使用后,可能又会出现异常,这时应查出原因,采取必要措施,加以消除,以恢复统计控制状态。3、控制图的界限公式对于常规控制图的控制界限计算公式,世界上各个国家都有相应的标准。中华人民共和国国家标准常规控制图(GB/T40912001),等同于国际标准休哈特控制图(ISO8258:1991)及其1993年的修订本。(1)常规计量控制图的界限公式。(2)常规计数控制图的界限公式。计数控制图是通过记录所考察的样本中每个个体是否具
13、有某种特性(或特征),如合格与不合格;合格率与不合格率;缺陷与单位缺陷等某种事件所发生的次数对过程进行监控的控制图。三、 控制图的观察与分析在生产过程中,通过分析控制图来判定生产过程是否处于稳定状态。1、控制图的判断稳态准则在生产过程中只存在偶然因素而不存在异常因素对过程的影响状态,这种状态称为统计控制过程状态或稳定状态,简称稳态。稳态是生产过程追求的目标。在统计量为正态分布的情况下,只要有一个点子在界限外就可以判断有异常。但由于两类错误的存在,只根据一个点子在界限内外远不能判断生产过程处于稳态。如果连续在控制界内的点子更多,即使有个别点子出界,过程仍看作是稳态的,这就是判稳准则。在做控制图判
14、别时,首先应该判断过程是否稳定。生产过程或工序是否处于受控状态,其基本判断条件有以下两条。(1)在控制界限内的点子排列无缺陷,为随机排列。点子排列无缺陷意味着应满足以下三个条件:样本点分布均匀,位于中心线两侧的样本点各占50%;靠近中心线的样本点约占2/3;靠近控制界限的样本点极少。(2)所有点子基本上都落在控制界限内。由概率论理论可知,小概率事件可以认为不会发生。如果在控制图中点子未出界限,同时界线内点子的排列也是随机的,则认为生产过程处于稳定状态或控制状态。如果控制图点子出界或界限内点排列非随机,则认为生产过程不稳定或失控。对于生产过程或工序而言,控制图的判断稳态准则起着告警铃的作用,控制
15、图点,子出界就好比告警铃响,告诉现在是应该进行查找原因、采取措施、防止再犯的时刻了。2、控制图的判异规则控制图上的点子依样本时间序列而出现在控制图上,通常是很随机地散布在管制界内。有时点子虽未超出管制界限,但一连串好几点都在管制图的中心线以上或点子呈现周期性变化时,也可判为异常。判异准则有两类:点出界就判异,这一点是针对界外点的;界内点排列不随机判异,这一点则是针对界内点的。常规控制图的判异准则参照ISO8258和GB/T40912001有8种准则。将控制图等分为6个区。四、 过程能力的计算和评价(一)过程能力的计算当生产过程处于稳定状态时,一定的工序能力指数与一定的不合格品率相对应。根据所采
16、用数据类型的不同和技术要求的不同,工序能力指数和不合格概率的计算又可以分为四种情况。(二)过程能力评价过程能力指数客观且定量地反映了过程能力满足质量标准的程度。它与生产过程中的加工能力和管理水平有关。过程能力指数越大,产品的加工质量就越高。因此,在实际生产中,根据过程能力指数的大小对过程的加工能力进行分析和评价,以便于采取必要的措施,既要保证过程质量,又要使成本适宜。1、无偏状态下过程能力评价一般情况下,无偏状态是指过程中心与质量标准公差中心重合。(1)特等一过程能力过于充裕。在过程或工序允许的情况下,可考虑放宽管理或降低成本,可放宽检查,如人和设备的配备可相对降低一些,这样可以带来降低成本、
17、提高效率的效果;提高产品的原设计精度,改进产品性能;加大抽样间隔,减少抽验件数,降低检验的各种消耗。(2)1等过程能力充裕。按过程进行管理,正常运转;非重要过程或工序可允许小的外来波动;对不重要的过程或工序可放宽检查,工序控制抽样间隔可放宽。(3)2等过程能力尚可。必须加强对生产过程的监控,防止外来波动;调查4MIE因素,作必要改进;严格执行各种规范、标准、制度;坚持合理的抽样方案和检验规程。(4)3等一过程能力不足。必须采取措施提高过程或工序能力,通过因果图、排列图找出需要改进的因素;分析质量标准是否脱离实际,应实事求是地修正质量指标过严的情况;加强质量检验工作。(5)4等一过程能力严重不足
18、。立即追查原因,采取紧急措施,提高工序能力,对4MIE必须进行根本性的改革,要从根本上消除影响质量的关键因素。2、有偏状态下过程能力评价一般情况下,有偏状态是指过程分布中心与质量标准公差中心不重合,出现了偏移。从统计的角度看有偏状态,中心偏移使得过程分布中心值不在目标值上,偏移量的出现使得过程能力指数Cp降低,过程输出的不合格品率增加。五、 过程能力1、过程能力过程能力(PC)是指过程(或工序)处于稳定状态下的实际加工能力,它是衡量工序质量的一种标志,又叫工序能力,在机械加工业中又叫加工精度。SPC的基准就是统计控制状态或称稳态。过程能力反映了稳态下该过程本身所表现的最佳性能(分布宽度最小)。
19、因此,在稳态下,过程的性能是可预测的,过程能力也是可评价的。离开稳态这个基准,对过程就无法预测,也就无法评价。过程能力决定于由偶然因素造成的标准差。通常用6倍标准差(六西格玛)表示过程能力,它的数值越小越好。2、过程能力指数过程能力指数,简称Cp或Cpk,以往称为工序能力指数,现在则统一称为过程能力指数。Cp是用于反映过程处于正常状态时,即人员、机器、原材料、工艺方法、测量和环境(5MIE)充分标准化并处于稳定状态时,所表现出的保证产品质量的能力。过程能力是表示生产过程客观存在着分散的一个参数。但是这个参数能否满足产品的技术规格要求,仅从它本身还难以看出。因此,还需要另一个参数来反映工序能力满
20、足产品技术要求(公差、规格等质量标准)的程度。这个参数就叫做过程能力指数,也称为工序能力指数或工艺能力指数。它是技术规格要求和工序能力的比值。六、 质量数据与分布规律1、质量数据的基本概念定量分析是现代质量管理中的基本特征之一。为了进行定量分析,就必须有数据。因此,在质量管理中要特别重视对数据的搜集、整理和分析工作。质量数据是指某质量指标的质量特性值,在质量控制过程中,将检测和分析得到的质量特性值用数字记录下来,简称质量数据。由于质量一词含义丰富,既包括狭义的产品质量,也包括广义的工作质量,因而质量指标在企业中就多种多样,质量数据在企业中几乎无处不在。在质量数据统计分析中,从样本到总体的问题,
21、即统计推断问题。所谓统计推断,就是根据抽样分布律和概率理论,由样本结果(统计数)来推论总体特征(参数)。因此,特别关注三项指标,一是数据的集中位置,二是数据的分散程度,三是数据的分布规律。质量数据是指由个体产品质量特性值组成的样本(总体)的质量数据集,在统计上称为变量;个体产品质量特性值称变量值,根据质量数据的特点,可以将其分为计量值数据和计数值数据。(1)计量值数据。计量值数据是指可以连续取值的数据,属于连续型变量。其特点是在任意两个数值之间都可以取精度较高一级的数值。它通常可以用仪器测量的连续性数据,如长度、重量、强度、时间、标高、位移等。(2)计数值数据。计数值数据是指不能连续取值的,只
22、能用自然数表示的数据,属于离散型变量。如合格品件数、废品数、错字数、质量缺陷点数等。计数值数据还可进一步划分为计件值数据和计点值数据。计件值数据是指按产品个数计数的数据,如合格品件数、废品件数等;计点值数据是指按点计数的数据,如缺陷、棉布上的疵点数、铸件上的砂眼数等。计数值是指具有离散分布性的数据。2、质量数据的统计特征值应用统计过程质量控制,其基本的做法就是用有限的样本去分析推断总体的特征。过程的质量特性值是不断波动的。当搜集到的数据足够多时,就会发现一个现象,即所有数据都在一定范围内分散在一个中心值周围,越靠近中心值,数据越多;越偏离中心值,数据越少。这意味着数据的分散是有规律的,表现为数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 农机 履带 项目 统计 过程 质量 控制 分析 参考
限制150内