《一元二次方程解法复习课(课件)只是课件.ppt》由会员分享,可在线阅读,更多相关《一元二次方程解法复习课(课件)只是课件.ppt(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元二次方程解法复习课(课件)一元二次方程一元二次方程 概念及概念及一般形式一般形式方程的解法方程的解法直接开平方法直接开平方法因式分解法因式分解法配方法配方法公式法公式法1、判断下面哪些方程是一元二次方程、判断下面哪些方程是一元二次方程 练习二练习二2、把方程(、把方程(1-x x)(2-x x)=3-x x2 化为一化为一般形式是:般形式是:_,其二次项系其二次项系数是数是_,一次项系数是一次项系数是_,常数项是常数项是_.3、方程(、方程(m-2)x x|m|+3mx x-4=0是关于是关于x的一元二次方程,则的一元二次方程,则()A.m=2 B.m=2 C.m=-2 D.m 2A.m=
2、2 B.m=2 C.m=-2 D.m 2 2x2-3x-1=02-3-1C 例例:解下列方程解下列方程v、用直接开平方法、用直接开平方法:(x+2)2=v2、用配方法解方程、用配方法解方程4x2-8x-5=0 解解:两边开平方两边开平方,得得:x+2=3 x=-23 x1=1,x2=-5右边开平方右边开平方后,根号前后,根号前取取“”。两边加上相等项两边加上相等项“1”。解解:移项移项,得得:3x2-4x-7=0 a=3 b=-4 c=-7 b2-4ac=(-4)2-43(-7)=1000 x1=x2=解解:原方程化为原方程化为 (y+2)2 3(y+2)=0 (y+2)(y+2-3)=0 (
3、y+2)(y-1)=0 y+2=0 或或 y-1=0 y1=-2 y2=1先变为一般先变为一般形式,代入形式,代入时注意符号。时注意符号。把把y+2y+2看作一个看作一个未知数,变成未知数,变成(ax+b)(cx+d)=(ax+b)(cx+d)=0 0形式。形式。3 3、用公式法解方程、用公式法解方程 3x 3x2 2=4x+7=4x+74 4、用分解因式法解方程:(、用分解因式法解方程:(y+2)y+2)2 2=3(y+2=3(y+2)按括号中的要求解下列一元二次方程:按括号中的要求解下列一元二次方程:(1)4(1+x)2=9(直接开平方法);(直接开平方法);(2)x2+4x+2=0(配方
4、法);(配方法);(3)3x2+2x-1=0(公式法);(公式法);(4)(2x+1)2=-3(2x+1)(因式分解法)(因式分解法)x x2 2-3x+1=0 3x-3x+1=0 3x2 2-1=0 -1=0 -3t -3t2 2+t=0 x+t=0 x2 2-4x=2 -4x=2 2x 2x2 2x=0 5(m+2)x=0 5(m+2)2 2=8=8 3y 3y2 2-y-1=0 2x-y-1=0 2x2 2+4x-1=0 +4x-1=0 (x-2)(x-2)2 2=2(x-2)=2(x-2)适合运用直接开平方法适合运用直接开平方法 ;适合运用因式分解法适合运用因式分解法 ;适合运用公式法
5、适合运用公式法 ;适合运用配方法适合运用配方法 .一般地,当一元二次方程一次项系数一般地,当一元二次方程一次项系数为为0 0时(时(axax2 2+c=0+c=0),应选用),应选用直接开平方法直接开平方法;若常数项为若常数项为0 0(axax2 2+bx=0+bx=0),应选用),应选用因式因式分解法分解法;若一次项系数和常数项都不为;若一次项系数和常数项都不为0 0(axax2 2+bx+c=0+bx+c=0),先化为一般式,看一边),先化为一般式,看一边的整式是否容易因式分解,若容易,宜的整式是否容易因式分解,若容易,宜选用因式分解法,不然选用选用因式分解法,不然选用公式法公式法;不;不
6、过当二次项系数是过当二次项系数是1 1,且一次项系数是偶,且一次项系数是偶数时,用配方法也较简单。数时,用配方法也较简单。我的发现 公式法虽然是万能的,对任何一元二公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用因此在解方程时我们首先考虑能否应用“直接开平方法直接开平方法”、“因式分解法因式分解法”等等简单方法,若不行,再考虑公式法(适简单方法,若不行,再考虑公式法(适当也可考虑配方法)当也可考虑配方法)选择适当的方法解下列方程选择适当的方法解下列方程:1.解方程解方程:(x+1)(x+2)=62.已知已知:
7、(a2+b2)(a2+b2-3)=10 求求a2+b2 的值。的值。中考直击中考直击思考思考ax2+c=0 =ax2+bx=0 =ax2+bx+c=0 =因式分解法因式分解法公式法(配方法)公式法(配方法)2 2、公式法虽然是万能的,对任何一元二次方程都适用,、公式法虽然是万能的,对任何一元二次方程都适用,但不一定但不一定 是最简单的,因此在解方程时我们首先考是最简单的,因此在解方程时我们首先考虑能否应用虑能否应用“直接开平方法直接开平方法”、“因式分解法因式分解法”等简单方等简单方法,若不行,再考虑公式法(适当也可考虑配方法)法,若不行,再考虑公式法(适当也可考虑配方法)3 3、方程中有括号时,应先用整体思想考虑有没有简单方、方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。形式再选取合理的方法。1 1、直接开平方法直接开平方法因式分解法因式分解法此课件下载可自行编辑修改,仅供参考!此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢感谢您的支持,我们努力做得更好!谢谢
限制150内