最新弹性力学双语版-西安交通大学-8PPT课件.ppt
《最新弹性力学双语版-西安交通大学-8PPT课件.ppt》由会员分享,可在线阅读,更多相关《最新弹性力学双语版-西安交通大学-8PPT课件.ppt(75页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、弹性力学双语版弹性力学双语版-西安交通西安交通大学大学-8-82Similarly,we get Here we prove the relation of the equality of cross shears againfrom List the equations,cancel terms,we getThese are differential equations of equilibrium under rectangular coordinate of spaceTwo.Geometric Equations For spatial problems,deformation co
2、mponents and displacement components should satisfy following geometric equations Of which the first two and the last have been obtained among plane problems,the other three can be led out with the same method.9同理可得这只是又一次证明了剪应力的互等关系。由 立出方程,经约简后得这就是空间直角坐标下的平衡微分方程。二 几何方程 在空间问题中,形变分量与位移分量应当满足下列 6 个几何方程
3、其中的第一式、第二式和第六式已在平面问题中导出,其余三式可用相同的方法导出。10Three.Physical Equations For an isotropic body,the relations between deformation components and stress components are as follows:These are physical equations for spatial problems.If stress components are denoted by strain components,physical equations can be w
4、ritten as:where:11三 物理方程对于各向同性体,形变分量与应力分量之间的关系如下:这就是空间问题的物理方程。将应力分量用应变分量表示,物理方程又可表示为:其中:12Four Equations of Compatibility Differentiate the second and the third formula of geometric equations at the left.Adding these two,we get Substitute the fourth formula of geometric equations into the above equa
5、tion,we get(a)Similarly(b)13四 相容方程 将几何方程第二式左边对z的二阶导数与第三式左边对y的二阶导数相加,得将几何方程第四式代入,得(a)同理(b)14 Differentiate the late three formulas of geometric equations separately for X,Y,Z,we get From the above equations,we get15 将几何方程中的后三式分别对x、y、z求导,得并由此而得16Similarly(d)The equations of(a),(b),(c),(d)are called co
6、mpatibility conditions of deformation,also known as equations of compatibility.Substituting physical equations into the above equations,and canceling terms according to differentiate equations of equilibrium,we get the compatibility equations which are expressed with stress components:Namely(c)17同理(
7、d)方程(a)、(b)、(c)、(d)称为变形协调条件,也称相容方程。将物理方程代入上述相容方程,并利用平衡微分方程简化后,得用应力分量表示的相容方程:即(c)18We call them Michel compatibility equations.19称其为密切尔相容方程。20 Among spatial problems,if the elasticity bodys geometric shape,restraint condition and any external factors are symmetrical in a certain axis(any plane which
8、passes this axis is all symmetrical one),then all stresses,deformations and displacements are symmetrical in this axis.This kind of problem is called axial symmetry problem of space.The forms of elastomers of axial symmetry problem are generally divided into two kinds:cylinder or half space body.Acc
9、ording to the characteristic of axial symmetry,we should adopt the cylindrical coordinates .if we take z axis as the axis of symmetry,then all the stress components,strain components and displacement components will be only the function of r and z,with the coordinate have nothing to do with.8-3 Axia
10、lly Symmetric Problems for Space21 在空间问题中,若弹性体的几何形状、约束情况以及所受的外来因素,都对称于某一轴(通过这个轴的任一平面都是对称面),则所有的应力、形变和位移也对称于这一轴。这种问题称为空间轴对称问题。根据轴对称的特点,应采用圆柱坐标 表示。若取对称轴为 z 轴,则轴对称问题的应力分量、形变分量和位移分量都将只是 r 和 z 的函数,而与 坐标无关。轴对称问题的弹性体的形状一般为圆柱体或半空间体。8-3 8-3 空间轴对称问题空间轴对称问题22One.Differential Equations of Equilibrium Consider a
11、 small element as shown in figure.For axial symmetry,the elements two cylindrical planes exist only normal stresses and axial shear stresses;its two horizontal planes exist only normal stresses and radial shear stresses;its two perpendicular planes exist only round normal stresses,which are shown in
12、 figure.According to the assumption of continuity,stress components of the small element s positive planes have a small increase compared with the negative ones.Attention:the increase of round normal stresses are zero at this moment.For equilibrium at radial direction and axial direction and from ,c
13、anceling terms and ignoring the high order small values,we get23一 平衡微分方程 取图示微元体。由于轴对称,在微元体的两个圆柱面上,只有正应力和的轴向剪应力;在两个水平面上只有正应力和径向剪应力;在两个垂直面上只有环向正应力,图示。根据连续性假设,微元体的正面相对负面其应力分量都有微小增量。注意:此时环向正应力的增量为零。由径向和轴向平衡,并利用 ,经约简并略去高阶微量,得:24 These are the differential equations of equilibrium for axial symmetry probl
14、ems in terms of cylindrical coordinates.Two.Geometric Equations Similar to the analysis of plane problem in term of polar coordinates,we get,the strain components caused by radial displacement are:The strain components caused by axial displacement are:From the principle of superposing,namely we get
15、the geometric equations for spatial axial symmetry problems:25 这就是轴对称问题的柱坐标平衡微分方程。二 几何方程 通过与平面问题及极坐标中同样的分析,可见,由径向位移引起的形变分量为:由轴向位移引起的形变分量为:由叠加原理,即得空间轴对称问题的几何方程:26Three.Physical Equations Because the cylindrical coordinates are orthogonal coordinates as the rectangular ones,we can get the physical equ
16、ations directly from Hookes law:If stress components are expressed with strain components,the above equations can be written as:Where:27三 物理方程 由于圆柱坐标,是和直角坐标一样的正交坐标,所以可直接根据虎克定律得物理方程:应力分量用形变分量表示的物理方程:其中:28Four.Solution of Axial Symmetry Problems Substitute the geometric equations into the physical equ
17、ations which stress components are expressed with strain components,we get the elastic equations:Where:Substitute the above equations into the differential equations of equilibrium,and use the notation:We get These are known as basic differential equations for solving the spatial axial symmetry prob
18、lems in terms of displacement components.Obviously,the displacement components in above equations are functions coordinates r and z,they cant be solved directly.So we introduce the following method:29四 轴对称问题的求解 将几何方程代入应力分量用应变分量表示的物理方程,得弹性方程:其中:再将弹性方程代入平衡微分方程,并记:得到这就是按位移求解空间轴对称问题所需要的基本微分方程。显然,上述基本微分方
19、程中的位移分量是坐标r、z 的函数,不可能直接求解,为此介绍下列方法:30Five.Displacement Tendency Function For simplicity,ignoring the body force,the basic differential equations in term of displacement components can be simplified as:Supposing now the displacement has tendency,we use displacement tendency function to denote the dis
20、placement components:Thus we get:Substitute with the basic differential equations which ignoring the body force,we get:Namely 31五 位移势函数 为简单起见,不计体力。位移分量的基本微分方程简化为:现在假设位移是有势的,把位移分量用位移势函数 表示为:从而有代入不计体力的基本微分方程,得即32 is a mediation function.The solving representations of stress components from displacemen
21、t tendency function are:If only ,we get .Namely So for an axial symmetry problem,if we find a suitable mediation function ,from which the displacement components and stress components satisfy the boundary conditions,then we get the correct solution of the problem.In order to solve axial symmetry pro
22、blems,Lame introduces a displacement function Attention:not all the displacement functions of spatial problems have tendency.But if they have,the volumetric strain .Six Lame Displacement FunctionDefine Where 33取 ,则 。即 为调和函数,由位移势函数求应力分量的表达式为:为求解轴对称问题,拉甫引用一个位移函数 这样,对于一个轴对称问题,如果找到适当的调和函数 ,使得由此给出的位移分量和应
23、力分量能够满足边界条件,就得到该问题的正确解答。注:并不是所有问题中的位移函数都是有势的。若位移势函数有势,则体积应变 。六 拉甫位移函数令其中34 Substitute the above functions into the basic differential functions which in the absence of body force,we get:Namely is a repeated mediation function,we call it Lame displacement function.The representations of stress compon
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 弹性 力学 双语版 西安交通大学 PPT 课件
限制150内