2017年高考数学总复习精品课件(苏教版):第十三单元第二节 总体分布和总体特征数的估计.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2017年高考数学总复习精品课件(苏教版):第十三单元第二节 总体分布和总体特征数的估计.ppt》由会员分享,可在线阅读,更多相关《2017年高考数学总复习精品课件(苏教版):第十三单元第二节 总体分布和总体特征数的估计.ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二节 总体分布和总体特征数的估计,基础梳理,1. 作频率分布直方图的步骤(1)求极差(即一组数据中 与 的差);(2)决定 与 ;(3)将数据 ;(4)列 ;(5)画 .2. 频率分布折线图和总体分布的密度曲线(1)频率分布折线图:将频率分布直方图中各相邻的矩形的 顺次连接起来.,最大值,最小值,组距,组数,分组,频率分布表,频率分布直方图,上底边中点,足够小,足够大,(2)总体分布的密度曲线:如果将样本容量取得 ,分组的组距取得 ,那么相应的频率折线图将趋于一条光滑曲线,我们称这条光滑曲线为总体分布的密度曲线.3. 标准差和方差设一组样本数据 ,其平均数为 ,则有(1)标准差:s= .(2
2、)方差:s2= .4. 用茎叶图刻画数据有两个优点:(1)所有的信息都可以从 ;,图中得到,(2)茎叶图便于 ,能够展示数据的分布情况.但当样本数据较多或数据位数较多时,茎叶图的效果就不是很好了.,记录和表示,典例分析,题型一 图形信息题【例1】为了解九年级学生中女生的身高(单位:cm)情况,某中学对九年级女生身高进行了一次测量,所得数据整理后,列出了频率分布表如下:,(1)求出表中m,n,M,N所表示的数分别是多少;(2)画出频率分布直方图;(3)试问:全体女生中身高在哪组范围内的人数最多?估计九年级学生中女生的身高在161.5 cm以上的概率.,分析 每组距的频率是该组距中个体的个数与所研
3、究对象的个数之比;所有组距的频率之和为1;每一组距的频率是频率分布直方图中该组距所对应的矩形的面积.,解 (1)M= =50,m=50-(1+4+20+15+8)=2,N=1, (2)作出直角坐标系,组距为4,纵轴表示频率/组距,横轴表示身高,画出频率分布直方图如图.,(3)在153.5157.5 cm范围内最多,估计身高在161.5 cm以上的概率为P= =0.2.,学后反思 一般用频率分布直方图反映样本的频率分布,从而对总体的频率分布作出估计,其具体步骤如下:(1)将数据分组,确定合适的组距,列出频率分布表;(2)明确纵、横轴的意义,纵轴表示 , 横轴表示样本数据,画出直方图;(3)直方图
4、中每一个矩形的面积是样本数据落在这个区间上的频率,所有的小矩形的面积之和等于1,即频率之和为1.由此可以估计样本数据落在某个区间的频率或概率或者总体的数字特征.,举一反三1. 下列数据为宝洁公司在某年每周销售出的香皂数(单位:百万块):17.119.615.417.415.018.520.618.420.013.919.318.214.717.112.219.918.720.420.315.516.819.120.415.420.317.517.018.313.639.820.721.322.521.523.423.122.821.424.025.226.323.930.625.226.226
5、.932.826.326.624.326.223.8(1)把上述数据分组,列出频率分布表;(2)根据(1)的结果画频率分布直方图和频率分布折线图;(3)结合上面的描述,分析该年度香皂销售的分布情况.,解析: (1)频率分布表如下:,(2)频率分布直方图和频率分布折线图如图所示.(3)该年度每周的香皂销售量主要在1 500万块到3 000万块之间.,题型二 用样本分布估计总体【例2】对某电灯泡进行寿命追踪调查,情况如下:,(1)列出频率分布表;(2)画出频率分布直方图;(3)估计电灯泡寿命在200 h500 h以内的频率;(4)估计电灯泡寿命在300 h以上的频率.,分析 从分组中看寿命在某一范
6、围内的电灯泡的比例即寿命在该范围内的频率.,解 (1)样本频率分布表如下: (2)频率分布直方图如图:,(3)电灯泡寿命在200 h500 h以内的频数为150,则频率为 =0.75.(4)寿命在300 h以上的电灯泡的频数为150,则频率为 =0.75.,学后反思 利用样本的频率分布可近似地估计总体的分布.从本例可以看出,要比较准确地反映出总体分布的情况,必须准确地作出频率分布表或频率分布直方图,充分利用所给的数据正确地作出估计.解决总体分布估计问题一般程序为:当总体中所取不同数值较少时,常用条形图表示相应的样本的频率分布;否则常用频率分布直方图表示相应样本的频率分布.具体步骤为:(1)先确
7、定分组的组数(最大数据与最小数据之差除以组距数);(2)分别计算各组的频数及频率( );(3)画出频率分布直方图并作出相应估计.,2. 某公司在过去几年内使用某种型号的灯管1 000支.该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示.,举一反三,(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1 500小时的频率.,解析: (1),(2)由(1)可得0.048+0.121+0.208+0.223=0.6,所以灯管使用寿命不足1 500小时的频率为0.6.,题型三 用样本的数字特征估计总体的数字特征【例3】对划艇运动员甲、乙二人在相同的条件下进行了
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 年高 数学 复习 精品 课件 苏教版 第十三 单元 第二 总体 分布 特征 估计
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内