2017年高考数学总复习精品课件(苏教版):第十三单元第三节 线性回归方程.ppt
《2017年高考数学总复习精品课件(苏教版):第十三单元第三节 线性回归方程.ppt》由会员分享,可在线阅读,更多相关《2017年高考数学总复习精品课件(苏教版):第十三单元第三节 线性回归方程.ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第三节 线性回归方程,基础梳理,1. 两个变量的线性相关能用直线bx+a近似地表示的相关关系叫做线性相关关系.一般地,设有n对观察数据如下:当a、b使Q=(y1-bx1-a)2+(y2-bx2-a)2+(yn-bxn-a)2取得最小值时,方程=bx+a为拟合这n对数据的线性回归方程.,2. 线性回归方程,(1)最小二乘法求回归直线使得样本数据的点到回归直线的 最小的方法叫做最小二乘法.,距离的平方和,(2)线性回归方程 方程=bx+a是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),(xn,yn)的线性回归方程,其中a,b是待定参数.,典例分析,题型一 相关关系的判断【例1
2、】下列两个变量之间的关系是相关关系的是-. 降雪量与交通事故发生率; 单位面积产量为常数时,土地面积与产量; 日照时间与水稻的亩产量; 电压一定时,电流与电阻.,分析 函数关系和相关关系都是指两个变量之间的关系,函数关系是两变量之间的一种确定关系,而相关关系是一种不确定关系.,解 中两个变量间的关系都是确定的,所以是函数关系;中两个变量是相关关系,降雪量相同的不同地段,交通事故的发生率也不同;中的两个变量是相关关系,对于日照时间一定的水稻,仍可以有不同的亩产.,学后反思 判断两个变量间的关系是函数关系还是相关关系,关键是判断两个变量间的关系是否是确定的,若确定,则是函数关系;若不确定,再判断是
3、否线性相关.判断两个变量之间有无线性相关关系,最简便可行的方法是绘制散点图.散点图是由数据点分布构成的,是分析研究两个变量相关的重要手段,如果发现点的分布从整体上看大致在一条直线附近,那么这两变量是线性相关的.,典例分析,题型一 相关关系的判断【例1】下列两个变量之间的关系是相关关系的是-. 降雪量与交通事故发生率; 单位面积产量为常数时,土地面积与产量; 日照时间与水稻的亩产量; 电压一定时,电流与电阻.,分析 函数关系和相关关系都是指两个变量之间的关系,函数关系是两变量之间的一种确定关系,而相关关系是一种不确定关系.,解 中两个变量间的关系都是确定的,所以是函数关系;中两个变量是相关关系,
4、降雪量相同的不同地段,交通事故的发生率也不同;中的两个变量是相关关系,对于日照时间一定的水稻,仍可以有不同的亩产.,学后反思 判断两个变量间的关系是函数关系还是相关关系,关键是判断两个变量间的关系是否是确定的,若确定,则是函数关系;若不确定,再判断是否线性相关.判断两个变量之间有无线性相关关系,最简便可行的方法是绘制散点图.散点图是由数据点分布构成的,是分析研究两个变量相关的重要手段,如果发现点的分布从整体上看大致在一条直线附近,那么这两变量是线性相关的.,1. 有五组变量:汽车的重量和汽车每消耗1升汽油所行驶的平均路程;平均日学习时间和平均学习成绩;某人每日吸烟量和其身体健康情况;正方形的边
5、长和面积;汽车的重量和百公里耗油量.其中两个变量成正相关的是 .,举一反三,解析: 由相关关系的有关概念可知正相关,为负相关,为函数关系.,答案: ,【例2】下面是水稻产量与施化肥量的一组观测数据:施化肥量:15 20 25 30 35 40 45水稻产量:320 330 360 410 460 470 480,(1)将上述数据制成散点图;(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?,分析 判断变量间是否是线性相关,一种常用的简便可行的方法就是作散点图.,解 (1)散点图如下:,(2)从图中可以发现,当施化肥量由小到大变化时,水稻产量由小
6、变大,图中的数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系,但水稻产量只是在一定范围内随着化肥施用量的增加而增长.,学后反思 散点图是由大量数据点分布构成的,是定义在具有相关关系的两个变量基础之上的.对于性质不明确的两组数据可先作散点图,直观地分析它们有无关系及关系的密切程度.,2. 下表是某地的年降雨量(mm)与年平均气温()的数据资料,两者是线性相关关系吗?求线性回归方程有意义吗?,举一反三,解析: 以x轴为年平均气温,y轴为年降雨量,可得相应的散点图如图所示.因为图中各点并不在一条直线的附近,所以两者不具有线性相关关系,没必要用回归直线进行拟合.如果用公式求线性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 年高 数学 复习 精品 课件 苏教版 第十三 单元 三节 线性 回归 方程
限制150内