复合材料物理和化学性能的复合规律.ppt
《复合材料物理和化学性能的复合规律.ppt》由会员分享,可在线阅读,更多相关《复合材料物理和化学性能的复合规律.ppt(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、复合材料物理和化学性能的复合规律 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望复合材料中,基体或填料的含量通常以质量百分复合材料中,基体或填料的含量通常以质量百分率表示,必须将质量百分率换算成体积百分率,率表示,必须将质量百分率换算成体积百分率,才能应用复合规则来估算复合材料的密度。才能应用复合规则来估算复合材料的密度。8.1密度密度c复合材料的密度;复合材料的密度;m基体的密度;基体的密度;f增强体的密度;增强体的密度;Vf增强体的体积分数。增强体的体积分数。
2、复合材料的最基本物复合材料的最基本物性性(8.1)如果以基体在复合材料中的质量分数如果以基体在复合材料中的质量分数Wm为已知数:为已知数:对对于于聚聚合合物物基基复复合合材材料料,由由于于m对对大大多多数数聚聚合合物物来来说说差差别别不不大大,当当填填料料一一定定时时,复复合合材材料料的的密密度度主主要要取决于填料的含量。取决于填料的含量。(8.1)8.2热性能热性能热性能热性能热基础物性热基础物性耐热性耐热性热膨胀系数热膨胀系数导热系数导热系数比热比热热功能复合材料热功能复合材料的最重要性质的最重要性质与力学性能并列为结构与力学性能并列为结构复合材料最重要的特性复合材料最重要的特性热膨胀系数
3、;热膨胀系数;Vf增强体的容积分数;增强体的容积分数;角标角标c、m、f分别代表复合材料、基体和增强体。分别代表复合材料、基体和增强体。8.2.1热基础物性热基础物性基本上可按复合规则加以估算:基本上可按复合规则加以估算:一般无机填料的热膨胀系数较聚合物的要小得多,一般无机填料的热膨胀系数较聚合物的要小得多,所以,填充无机填料的复合塑料其热膨胀系数要较纯所以,填充无机填料的复合塑料其热膨胀系数要较纯聚合物的小,其数值接近于金属的热膨胀系数。聚合物的小,其数值接近于金属的热膨胀系数。聚合物、填料及其复合材料的热膨胀系数聚合物、填料及其复合材料的热膨胀系数(1010-5-5)聚合物聚合物热膨胀系数
4、热膨胀系数(1/)填料填料热膨胀系数热膨胀系数(1/)复合材料复合材料热膨胀系数热膨胀系数(1/)PP10-11玻璃纤维玻璃纤维E0.5PP(含含30GF,质质量比量比)3.2PVC(硬质硬质)7-8碳纤维(碳纤维(PAN系)系)(0.3-0.5)PC(含含30GF,质量比)质量比)2.7PC7滑石粉滑石粉0.8尼龙尼龙66(含(含30GF,质量比)质量比)2.2尼龙尼龙68CaCO31AS(含含30GF,质量比)质量比)2.8尼龙尼龙6610-15铝铝2.4PP(含含33CaCO3,质量比)质量比)4.2AS6-7铁铁1.2PVC(含含33木粉,木粉,质量比)质量比)3.2材料材料热膨胀系数
5、热膨胀系数(10-5/)流动方向流动方向垂直流动方向垂直流动方向尼龙尼龙-6非增强非增强11.713.7FRTP(含含GF30)0.8712.0PC非增强非增强7.67.6FRTP(含含GF30)1.96.8改性改性PPO非增强非增强7.78.5FRTP(含含GF30)2.37.1PETFRTP(含含GF30)0.754.5膨胀系数的各向异性膨胀系数的各向异性由于纤维在流动方向的取向,使流动方向上及由于纤维在流动方向的取向,使流动方向上及与之垂直方向上的热膨胀系数产生很大的差异。与之垂直方向上的热膨胀系数产生很大的差异。影响成型速度影响成型速度制备导热或隔热性制品制备导热或隔热性制品塑塑料料的
6、的成成型型工工艺艺几几乎乎都都伴伴随随着着加加热热和和冷冷却却过过程程。填填料料的的加加入入,如如果果提提高高混混合合物物的的导导热热系系数数,可可缩缩短短加加热或冷却时间,也就是提高成型速度。热或冷却时间,也就是提高成型速度。随随着着填填料料的的不不同同,复复合合塑塑料料可可用用作作隔隔热热或或导导热热材材料料。以以空空气气为为填填料料的的泡泡沫沫塑塑料料是是良良好好的的隔隔热热材材料料,而而以以碳碳纤纤维维、金金属属粉粉等等为为填填料料的的复复合合塑塑料料则则可可作作为为导导热热性复合材料使用。性复合材料使用。复复合合材材料料的的导导热热系系数数在在理理想想情情况下可由下列复合规则估算:况
7、下可由下列复合规则估算:Pf填料的最填料的最高填充容积分数高填充容积分数实际的复合材料由于填料的形态等因素的影响,其导热实际的复合材料由于填料的形态等因素的影响,其导热系数各异。系数各异。Nielsen考虑了这些因素后提出下列公式:考虑了这些因素后提出下列公式:AKE1KE爱因斯坦系数爱因斯坦系数各种材料的导热系数各种材料的导热系数 聚合物聚合物导热系数导热系数W/(mK)填料填料导热系数导热系数W/(mK)复合材料复合材料导热系数导热系数W/(mK)尼龙尼龙-660.25E玻纤玻纤1.30尼龙尼龙-66(含(含40玻纤)玻纤)0.50尼龙尼龙-120.29碳纤维碳纤维2.10-10.45尼龙
8、尼龙-66(含(含40碳纤)碳纤)1.21PPS0.28碳酸钙碳酸钙2.34尼龙尼龙-12(含(含30玻纤)玻纤)0.24PSU0.26滑石粉滑石粉2.10PPS(含含30玻纤)玻纤)0.40PP0.13铁(钢)铁(钢)58.52PPS(含含30碳纤)碳纤)0.75铝铝209PSU(含含30玻纤)玻纤)0.31杉(纵向)杉(纵向)0.42PPS(含含30碳纤)碳纤)0.80杉(横向)杉(横向)0.11PP(含含30玻纤)玻纤)0.33PP(含含30CaCO3)0.35填料的导热系数一填料的导热系数一般比聚合物的大,般比聚合物的大,可预计,复合塑料可预计,复合塑料的导热系数要比单的导热系数要比单
9、纯聚合物的大。纯聚合物的大。复合材料在一定温度下的比热基本上可由复合规则估算:复合材料在一定温度下的比热基本上可由复合规则估算:使单位物量的某种物质升使单位物量的某种物质升高单位温度所需的热量高单位温度所需的热量质量比热质量比热容量比热容量比热摩尔比热摩尔比热填填料料的的质质量量比比热热一一般般比比聚聚合合物物的的稍稍小小,因因此此复复合合材材料料的的质质量量比比热热也也比比单单一一聚聚合合物物的的稍稍小小。但但两两者者的容量比热则无大差异。的容量比热则无大差异。设各元素在处于液体和固体时的摩尔比热:设各元素在处于液体和固体时的摩尔比热:元素元素液体液体固体固体C2.81.8H4.82.3O6
10、.04.0S、P7.45.4F7.05.0Si5.83.8B4.72.7其他元素其他元素8.06.2以碳酸钙为例,其比热可计算如下:以碳酸钙为例,其比热可计算如下:CaCO3(固体固体)6.21.834.020碳酸钙的分子质量碳酸钙的分子质量40.08+12.0l+316100.09故其质量比热故其质量比热cf20100.090.20calg8.38Jg这个值与碳酸钙在这个值与碳酸钙在20时的实测值为时的实测值为8.57Jg基本吻合。基本吻合。一般表现为随着填料一般表现为随着填料的加入,玻璃化温度升高,的加入,玻璃化温度升高,玻璃化温度的升高程度与玻璃化温度的升高程度与填料加入量成正比。填料加
11、入量成正比。8.2.2耐热性耐热性表征非结晶性聚合物表征非结晶性聚合物耐热性的物理量是玻耐热性的物理量是玻璃化温度璃化温度Tg,结晶性,结晶性聚合物是熔点聚合物是熔点Tm。聚合基复合材料的聚合基复合材料的T Tg g与与填充物含量的关系填充物含量的关系在聚甲基丙烯酸甲酯中在聚甲基丙烯酸甲酯中加入加入10白垩,玻璃化白垩,玻璃化温度可下降温度可下降10左右。左右。在界面上由于填料在界面上由于填料-聚合物分子聚合物分子间作用力的存在,使聚合物大分子间作用力的存在,使聚合物大分子链段运动受到阻碍,因而使聚合物链段运动受到阻碍,因而使聚合物的玻璃化温度升高。这种聚合物大的玻璃化温度升高。这种聚合物大分
12、子链段运动受阻的程度随着填料分子链段运动受阻的程度随着填料-聚合物分子间作用力增大而增高。聚合物分子间作用力增大而增高。填料的加入引填料的加入引起聚合物微观起聚合物微观结构的改变结构的改变引起界面层引起界面层聚合物大分子敛集密聚合物大分子敛集密度的改变度的改变(一般情况下是密度降低一般情况下是密度降低),随着大分子敛集密度的改变,改变了随着大分子敛集密度的改变,改变了分子间作用力,因而改变分子链段的分子间作用力,因而改变分子链段的活动能力,使聚合物的玻璃化温度随活动能力,使聚合物的玻璃化温度随之而发生变化。之而发生变化。基体聚合物的耐热性和基体聚合物的耐热性和FRTP的热变形温度的热变形温度基
13、体聚合物基体聚合物FRTP(含含GF20)热热变形温度变形温度T2()T2T1()类别类别名称名称熔点熔点()玻璃化玻璃化温度温度()热变形热变形温度温度()结晶性结晶性树脂树脂PP176601211496189HDPE1374912778尼龙尼龙-622549218149尼龙尼龙-6626571255184POM16511016353PET267124227123非结晶非结晶性树脂性树脂PS1059310411PC15013214311PSU1901741828材料在材料在1.86MPa或或0.46MPa的受压负荷的受压负荷下,材料变形达一下,材料变形达一定尺寸时的温度。定尺寸时的温度。经填
14、料填充经填料填充后热变形温后热变形温度明显上升度明显上升经填料填充经填料填充后热变形温后热变形温度上升不大度上升不大一般来讲,如果填料具有高的表面能,或一般来讲,如果填料具有高的表面能,或聚合物分子的极性较大,则填料聚合物分子的极性较大,则填料-聚合物分子间聚合物分子间引力也较大,即提高聚合物玻璃化温度较明显。引力也较大,即提高聚合物玻璃化温度较明显。如在填料如在填料聚合物界面能形成氢键,则填料的聚合物界面能形成氢键,则填料的加入促使聚合物玻璃化温度的升高就更加明显。加入促使聚合物玻璃化温度的升高就更加明显。例如,玻璃纤维增强尼龙塑料,由于玻璃例如,玻璃纤维增强尼龙塑料,由于玻璃尼尼龙界面上可
15、能形成氢键,因此,玻璃纤维加入龙界面上可能形成氢键,因此,玻璃纤维加入后可使尼龙的玻璃化温度有显著的提高。后可使尼龙的玻璃化温度有显著的提高。热变形温度的负荷依赖性热变形温度的负荷依赖性材料材料热变形温度(热变形温度()0.46MPa1.86MPaPP10560PP/滑石粉(滑石粉(30)14595PP/GF(20)162150尼龙尼龙-6619070尼龙尼龙-66/GF(30%)255250AS10090AS/GF(30%)115105聚合物的燃烧过程由两个相继的化学过程聚合物的燃烧过程由两个相继的化学过程分解分解和燃烧所组成,两者通过着火和热反馈相互联系。和燃烧所组成,两者通过着火和热反馈
16、相互联系。8.3燃烧特性燃烧特性8.3.1聚合物的燃烧特性聚合物的燃烧特性聚合物聚合物热分解热分解热散失热散失不燃物不燃物可燃物可燃物焦焦熔融物熔融物燃烧燃烧气体气体烟烟碳粒碳粒-Q1+Q2+Q2热散失热散失热反馈热反馈 以氧指数作为聚合物阻燃性的判据是以氧指数作为聚合物阻燃性的判据是Fenimore和和Martin于于1966年引入的。它是年引入的。它是指聚合物着火后刚够维持燃烧时氧气在试指聚合物着火后刚够维持燃烧时氧气在试验气体验气体(氧、氮混合气体氧、氮混合气体)中的最小百分含中的最小百分含量。试验用标准试样在标准条件量。试验用标准试样在标准条件25和气和气流线速度为流线速度为(4土土1
17、)cms下进行。下进行。一些聚合物的氧指数一些聚合物的氧指数聚合物聚合物氧指数氧指数聚合物聚合物氧指数氧指数聚甲醛聚甲醛15羊毛羊毛25聚环氧乙烷聚环氧乙烷15聚碳酸酯聚碳酸酯27聚甲基丙烯酸甲酯聚甲基丙烯酸甲酯17聚间苯二甲酰苯聚间苯二甲酰苯二胺二胺28.5聚丙稀腈聚丙稀腈18聚苯醚聚苯醚29聚乙烯聚乙烯18聚砜聚砜30聚丙烯聚丙烯18酚醛树脂酚醛树脂35聚异戊二烯聚异戊二烯18.5氯丁橡胶氯丁橡胶40聚丁二烯聚丁二烯18.5聚苯骈咪唑聚苯骈咪唑41.5聚苯乙烯聚苯乙烯18.5聚氯乙稀聚氯乙稀42纤维素纤维素19聚偏氟乙烯聚偏氟乙烯44聚对苯二甲酸乙二酯聚对苯二甲酸乙二酯21聚偏氯乙烯聚偏氯
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复合材料 物理 化学 性能 复合 规律
限制150内