三角形全等的证明(内含flash动画)教学提纲.ppt
《三角形全等的证明(内含flash动画)教学提纲.ppt》由会员分享,可在线阅读,更多相关《三角形全等的证明(内含flash动画)教学提纲.ppt(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、三角形全等的证明(内含flash动画)全等三角形的判定(一)全等三角形的判定(一)SAS(边角边定理(边角边定理)任任意意画画一一个个ABC和和DEF,使使AB=DE,AC=DF,A=D,把把画画好好的的ABC和和DEF比比较,它们全等吗?较,它们全等吗?ABCDEFABCDEF由前边的作图比较过程,我们可以得出什么结论?由前边的作图比较过程,我们可以得出什么结论?用符号语言表达为:用符号语言表达为:在在ABC与与DEF中中AB=DE A=DAC=DFABCDEF(SAS)ABCDEF 两边和它们的夹角对应相等的两个三角形全两边和它们的夹角对应相等的两个三角形全等。等。简写成简写成“边角边边角
2、边”或或“SASSAS”图 1已知:如图1,AC=AD,CAB=DAB求证:ACBADBAC=AD(已知)CAB=DAB(已知)AB=AB(公共边)ACBADB(SAS)例1证明:在ACB和ADB中例例 题题 讲讲 解解A B C D 图2已知:如图2,ADBC,AD=CB求证:ADCCBA分析分析:观察图形,结合已知条件,知,AD=CB,AC=CA,但没有给出两组对应边的夹角(1,2)相等。所以,应设法先证明1=2,才能使全等条件充足。AD=CB(已知)1=2(已知)AC=CA(公共边)ADCCBA(SAS)例2证明:ADBC 1=2(两直线平行,内错角相等)在DAC和BCA中DC1AB2B
3、练习练习:已知:如图4,点A、B、C、D在同一条直线上,AC=DB,AE=DF,EAAD,BCAC,垂足分别为A、D图4求证:(1)EABFDC、(2)DF=AEBECDFA解解 题题 小小 结:结:解题思路解题思路1、根据“边角边(SAS)”条件,可证明两个三角形全等;2、再由“全等”作为过渡的条件,得到对应边等或对应角等;全等三角形的判定(二)全等三角形的判定(二)ASA(角边角定理)(角边角定理)创设情景,实例引入一张教学用的三角形硬纸板不小心一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复原来三角形同样大小的新教
4、具?能恢复原来三角形的原貌吗?的原貌吗?怎么办?可以帮帮我吗?CBEAD已知:任意 ABC,画一个 A/B/C/,使A/B/AB,A/=A,B/=B:画法:2、在 A/B/的同旁画DA/B/=A,EB/A/=B,A/D,B/E交于点C/。1、画A/B/AB;A/B/C/就是所要画的三角形。问:通过实验可以发现什么事实?现在同学们把我们所画的两个三角形重合在一起,你发现了什么?完全重合角边角公理:有两角和它们的夹边对应相等的两个三角形全等(简写为“ASA”)例1、已知:如图,DAB=CAB,C=D求证:AC=AD证明:DAB=CAB,C=DABD=ACD(三角形内角和定理)在ACB和ADB中 D
5、AB=CAB AB=AB (共用边)ABD=ACD ACBADB(ASA)AC=AD 例2、已知:点D在AB上,点E在AC上,BE和CD交于O点,AB=AC,B=C.求证:BD=CE证明:在ABE和ACD中 A=A AB=AC B=C ABEACD(ASA)AD=AE AB=AC BD=CE如图,要证明如图,要证明ACE BDF,根据给定的条件和根据给定的条件和指明的依据,将应当添设的条件填在横线上。指明的依据,将应当添设的条件填在横线上。(1)ACBD,CE=DF,(SAS)(2)AC=BD,ACBD (ASA)(3)CE=DF,(ASA)(4)C=D,(ASA)C BAEFDAC=BD A
6、=B C=DAC=BD A=BAEC=BFD课课堂堂练练习习1、如右图:已知,ABE=CBD,BCE=DBA,EC=AD求证:AB=BE,BC=DB2、如右图:已知,AD,EF,BC交于O,且AO=OD,BO=OC,EO=OF求证:AEBDFC变式练习:全等三角形的判定(三)全等三角形的判定(三)AAS(角角边定理)(角角边定理)定理的引入:如图在ABC和DEF中,A=D,B=E,BC=EF,ABC与DEF全等吗?ABCDEF证明:证明:A+B+C=180 D+E+F=180又又A=D B=E C=F C=FBC=EFB=EABCDEF (ASA)ABCDEF (ASA)ABCDEF如图所示,
7、如图所示,ABCDEF,那么那么角角边定理得证。角角边定理得证。三角形的判定定理三三角形的判定定理三 在两个三角形中,在两个三角形中,如果有二个角和任意一如果有二个角和任意一条边相等,那么这两个条边相等,那么这两个三角形全等。三角形全等。A=DB=EBC=EFABCDEF (AAS)例题讲解:例题讲解:例例1.已知:点已知:点D在在AB上,点上,点E在在AC上,上,BE和和CD相交于相交于 点点O,AD=AE,B=C。求证:求证:BD=CE 证明证明:在:在ADC和和AEB中中A=A(公共角)(公共角)AD=AE(已知)(已知)C=B(已知)(已知)ACDABE(AAS)AB=AC(全等三角形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 全等 证明 内含 flash 动画 教学 提纲
限制150内