《电机的在线监测与诊断培训课件.ppt》由会员分享,可在线阅读,更多相关《电机的在线监测与诊断培训课件.ppt(106页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、电机的在线监测与诊断笼型异步电动机因笼条断裂时,就会出现振动增加,起动时笼型异步电动机因笼条断裂时,就会出现振动增加,起动时间延长,定子电流摆动,电机滑差增加,转速转矩波动,温间延长,定子电流摆动,电机滑差增加,转速转矩波动,温升增高等故障征兆升增高等故障征兆一台直流电机运行中由于过载、机械振动、换向器变形、维一台直流电机运行中由于过载、机械振动、换向器变形、维护不当、湿度过低等诸原因,造成换向恶化故障。护不当、湿度过低等诸原因,造成换向恶化故障。恶劣的环境和苛刻的运行条件,以及超过技术条件所规定的恶劣的环境和苛刻的运行条件,以及超过技术条件所规定的允许范围运行,往往是直接导致电机故障的起因允
2、许范围运行,往往是直接导致电机故障的起因 电机的故障特点与诊断内容电机典型故障归纳:电机典型故障归纳:1、定子铁心故障、定子铁心故障通常发生在大型汽轮机发电机上,主要是铁心深处的过热通常发生在大型汽轮机发电机上,主要是铁心深处的过热问题问题 早期征兆是大的环路电流、高温和绝缘材料的热解早期征兆是大的环路电流、高温和绝缘材料的热解2、绕组绝缘故障、绕组绝缘故障原因:绝缘老化,绝缘缺陷及引线套管受污染原因:绝缘老化,绝缘缺陷及引线套管受污染主要症状:定子绕组局部放电量的增加主要症状:定子绕组局部放电量的增加发电机中常用局部放电(发电机中常用局部放电(PD)在线监测这类故障)在线监测这类故障感应电动
3、机中常用定子电流信号分析确定定子绕组故障感应电动机中常用定子电流信号分析确定定子绕组故障3、定子绕组股线故障(发电机)、定子绕组股线故障(发电机)股线间短路产生电弧发电、可能发展接地故障或相间短路股线间短路产生电弧发电、可能发展接地故障或相间短路故障故障征兆:水冷电机的冷却水中有绝缘材料热解产生的气体征兆:水冷电机的冷却水中有绝缘材料热解产生的气体4、定子端部线圈故障、定子端部线圈故障运行过程产生的冲击力使定子端部绕组发生位移,从而引运行过程产生的冲击力使定子端部绕组发生位移,从而引发绝缘劣化和发生局部放电发绝缘劣化和发生局部放电征兆:振动和局部放电征兆:振动和局部放电5、冷却水系统故障、冷却
4、水系统故障征兆:定子线棒或冷却水温度偏高、绝缘材料热解及可能征兆:定子线棒或冷却水温度偏高、绝缘材料热解及可能引起的放电引起的放电6、转子绕组故障(异步电动机)、转子绕组故障(异步电动机)转子故障主要有转子导条断裂,这将引起转矩跳动,转速波转子故障主要有转子导条断裂,这将引起转矩跳动,转速波动,转子振动以及过热等动,转子振动以及过热等 最常见的检测方法是定子电流监测(监测效果较困难),常最常见的检测方法是定子电流监测(监测效果较困难),常采用振动和绝缘材料热解监测方法。采用振动和绝缘材料热解监测方法。7、转子绕组故障(发电机)、转子绕组故障(发电机)主要是匝间短路故障。匝间短路可能由于发电机在
5、低速启动主要是匝间短路故障。匝间短路可能由于发电机在低速启动或停车时,槽中导体表面的污物引起了电弧,或者是巨大的或停车时,槽中导体表面的污物引起了电弧,或者是巨大的离心力和高温影响了绕组和绕组绝缘。离心力和高温影响了绕组和绕组绝缘。匝间短路故障可引起局部过热甚至导致转子接地。匝间短路故障可引起局部过热甚至导致转子接地。通用的监测方法是采用气隙磁密监测,通过探测气隙磁密,通用的监测方法是采用气隙磁密监测,通过探测气隙磁密,可以确定匝间短路的数量和位置;监测轴承振动是否加强。可以确定匝间短路的数量和位置;监测轴承振动是否加强。8、转子本体故障(各类电机)、转子本体故障(各类电机)主要由巨大的转子离
6、心力、大的负序暂态电流和转子不同主要由巨大的转子离心力、大的负序暂态电流和转子不同心引起心引起 征兆:轴承处过量的振动征兆:轴承处过量的振动对不同故障进行相对应特征量的监测对不同故障进行相对应特征量的监测1、放电监测、放电监测2、温度监测、温度监测3、热解产生的微粒监测、热解产生的微粒监测4、振动监测、振动监测5、气隙磁密监测、气隙磁密监测第一章电机红外诊断第一章电机红外诊断 一、红外诊断基础一、红外诊断基础1.红外线位置2.红外测温具有下列特点(1)测温范围广;-170+3200。(2)测温精度高:可分辨0.01K或更小。(3)反应速度快:可在几毫秒内测出物体的温度。(4)可测小目标:最小可
7、测出直径为7.5um的目标温度。(5)不接触被测物体,不破坏其温度场。(6)测距可远可近。3.红外测温与接触测温性能比较 项项 目目红红 外外 测测 温温接接 触触 测测 温温测温测温要求要求(1 1)知道被测物的发射率)知道被测物的发射率(2 2)被测物的辐射能充分抵达红)被测物的辐射能充分抵达红外探测器外探测器(3 3)消除背影噪声)消除背影噪声(1 1)测温设备与被测物间良好)测温设备与被测物间良好接触接触(2 2)接触测温时,被测物温度)接触测温时,被测物温度不应有显著变化不应有显著变化优优 点点(1 1)非接触,对被测物体无影响)非接触,对被测物体无影响(2 2)可测运动中的物体)可
8、测运动中的物体(3 3)可测瞬态温度)可测瞬态温度(4 4)可对点、线、面测温)可对点、线、面测温(5 5)可测绝对温度,也可测相对)可测绝对温度,也可测相对温度温度(1 1)可测物体内部温度)可测物体内部温度(2 2)要求精度高时,测温要求)要求精度高时,测温要求较简单较简单缺缺 点点(1 1)仅测表面温度)仅测表面温度(2 2)要求精度高时,测温要求严)要求精度高时,测温要求严格格(1 1)对)对小目标小目标的温度不能测的温度不能测(2 2)不能测)不能测运动中运动中的目标的目标(3 3)不适于测)不适于测瞬态瞬态温度温度(4 4)测温)测温范围范围不够宽不够宽(5 5)在生产过程中,不便
9、于同)在生产过程中,不便于同时测时测多个目标多个目标4.红外热像仪n红外热像仪(热成像仪或红外热成像仪):是通过非接触探测红外能量(热量),并将其转换为电信号,进而在显示器上生成热图像和温度值,并可以对温度值进行计算的一种检测设备。n红外热像仪能够将探测到的热量精确量化,不仅能够观察热图像,还能够对发热的故障区域进行准确识别和严格分析。图10-2-8 红外热像仪基本原理框图第七章电机红外诊断 二、红外诊断技术二、红外诊断技术1.红外诊断技术的构成红外诊断技术的构成n一台运转中的设备,当其零部件产生故障时,设备的整体或局部的热平衡会受到破坏或影响,设备内部的热必然逐步到达其外部表面,导致外表温度
10、场分布的变化。n红外检测技术捕捉到这些红外辐射的信息,通过检测结果总结分析,可以发现:n不同部位有不同的温度界限,n同一部位在不同故障情况下有不同的温度等级。n确诊出设备的故障性质、部位和程度,进而预测故障发展趋势和设备的寿命。n如图所示n红外诊断技术的构成红外诊断技术的构成2.红外热像仪的测温方法红外热像仪的测温方法1模拟量测温方法模拟量测温方法n较早期的红外热像仪,利用热像仪输出的视频模拟信号测量物体的温度,实质上就是测量物体视频信号的幅度。2智能化测温方法智能化测温方法n运用微处理机,摆脱模拟量的非线性校正和叠加的繁琐过程。n通过多路模拟开关和A/D转换器分别获得被测物体图像图像信号电压
11、信号电压与参考黑体温度电压参考黑体温度电压的数值;n然后根据各自的函数关系进行计算;n比模拟量方法精确3软件化测温方法软件化测温方法n配置有完整的图像处理系统,它包括相应的硬件和软件。n利用该软件,测量并显示出目标及其热图像上任意位置点温度值的精确结果和区域分析结果等。三、电机红外诊断实例三、电机红外诊断实例1.电机故障的产生、特征与发展(以发电机为例)实例1.发电机定子线棒接头故发电机定子线棒接头故障红外诊断障红外诊断(1)基本原理n绕组有电阻,通电发热n当发电机容量确定后,线棒固有电阻即为定值。n大型发电机,每相绕组线棒接头可达上千个,如果各接头接触电阻彼此不等,其中焊接不良的接头必然接触
12、电阻大、发热量多和温升也高。n因此,定子线棒焊接质量的红外诊断,实质上就是在向定子某一支路(或一相)绕组通入相同电流的条件下,用红外热像仪测量和比较各接头温度(或温升)来进行判别的。实例1.发电机定子线棒接头故障红个诊断发电机定子线棒接头故障红个诊断图图10-4-3 实测一台实测一台50MW水轮发电机定子线棒接头温水轮发电机定子线棒接头温度分布直方图度分布直方图最右力部分为高温实例1.发电机定子线棒接头故障红个发电机定子线棒接头故障红个诊断诊断(2)判据判据 属于以下情况之一的线棒接头应该判为焊接质量不合格(或已出现焊接故障)n1)热像不连续且温升超过平均温升10者;或温升超过平均温升10,且
13、在温度分布直方图中远离温度连续分布区的接头。n2)当已知接头绝缘层内外表面温度降时,在额定电流下,线棒接头表面温度推算到接头内的温度值超过110者。(3)图图10-4-4 发电机定子线棒接头焊接故障发电机定子线棒接头焊接故障热像图热像图 实例2.定子铁心故障的红外诊断n发电机定子铁心故障主要是铁心局部短铁心局部短路路,n这些短路点多数出现在定子齿部齿部表面,也有些在槽部,但很少发生在铁心内部和轭背。实例2.定子铁心故障的红外诊断(1)定子铁心故障的红外检测方法)定子铁心故障的红外检测方法n在运行状态下,发电机定子铁心封闭在机壳内,无法进行在线监测;n只能在静态下抽出转子,外施电源励磁外施电源励
14、磁,使定子铁心磁通密度接近额定值磁通密度接近额定值,借助铁损产生的温升进行铁心故障的红外检测。n具体方法:n通入的励磁电流应可使铁心产生约1.0T的磁通密度;n测量铁心在圆周方向的磁通密度分布磁通密度分布并作出曲线,n利用原有铁心和线棒温度测点监视和控制铁心温度铁心温度不得超过允许值不得超过允许值(105)。n在磁通密度1.0T下持续试验时间为90min,n如果故障点不能明显暴露不能明显暴露出来,试验磁通密度可增大到1.4T,持续时间为45min。实例2.定子铁心故障的红外诊断(1)定子铁心故障的红外检测方法)定子铁心故障的红外检测方法水轮发电机:水轮发电机:n定子铁心轴向较短,直径很大,n可
15、把红外热像仪置于铁心中央,沿铁心内圆的圆周方向扫描,并记录扫描热像。n把这些热像连接起来,相当于定子铁心内圆展开n从施加励磁时开始测试,每隔30min测量一次,直至温升接近稳定时为止。汽轮发电机汽轮发电机n定子铁心轴向较大、直径较小,热像仪置于铁心两端,对着铁心内圆扫描,记录整个铁心内圆的热像。n把这些热像拼接起来呈扇形状。实例2.定子铁心故障的红外诊断 n图10-4-5 良好定子铁心热像图 n图10-4-6有三处缺陷的定子铁心热像图 实例3.某发电机定子铁心热像图某发电机定子铁心热像图 a)励磁机侧左侧 b)汽轮机侧左侧 其它第二章电机绝缘诊断一、电机绝缘老化一、电机绝缘老化一、电机绝缘老化
16、一、电机绝缘老化n电机在长期运行后绝缘性能渐趋劣化,n绝缘结构的老化是各种劣化的综合表征。n造成电机绝缘结构老化的因素因素很多:1.电机绝缘劣化因素电机绝缘劣化因素表表11-2-1 电机绝缘劣化因素及产生的劣化征象电机绝缘劣化因素及产生的劣化征象劣化因子表现形式劣化征象热连续挥发、枯缩、化学变质、机械强度降低、散热性能变差冷热循环离层、龟裂、变形电压运行电压局部放电腐蚀、表面漏电灼痕冲击电压树枝状放电机械力振动磨损冲击离层、龟裂弯曲离层、龟裂环境吸湿泄漏电流增大、形成表面漏电通道和炭化灼痕结露浸水导电物质污损油、药品污损浸蚀和化学变质2.高压交流电机绝缘劣化过程图11-2-2 高压交流电机绝缘
17、劣化过程 二、电机绝缘的特征量 1.绝缘的特征量 1局部放电量、放电位置局部放电量、放电位置设备内部绝缘(油、纸)若存在杂质、气泡,它会导致其内部放电,日长月久就可能导致放电部位扩大,最后击穿。因此及早的监测其放电量和放电位置,并及时维修处理,可避免大事故发生。但开始发生放电时,其放电量很小,难以测量及定位。2介质损耗因数介质损耗因数 介质损耗因数 是表明设备绝缘状态的重要参数之一,当测得设备的大时,说明设备绝缘受潮,电导电流增大或内部有局部放电。设备正常时其值在0.10.8之间。1.绝缘的特征量 3泄漏电流泄漏电流 对于一些设备不能测量值时,也可用测量泄漏电流方法确定设备绝缘受潮或损坏程度。
18、4设备电容值设备电容值 设备中若进水时,其电容值会增大,但漏油时,其电容值会减少。规程规定当电容值的偏差超出额定值-510范围,应停电检查。上述4项特征参数中,局部放电是反映绝缘状态最灵敏的量,其次值、电容值漏电流也可反映绝缘状况。2.电机绝缘诊断内容电机绝缘诊断内容3.我国关于交流电动机绝缘电阻的测量要求(1)测量绕组的绝缘电阻和吸收比绝缘电阻和吸收比,应符合下列规定:1)额定电压为1000V以下,常温下绝缘电阻值不应低于0.5M;额定电压为1000V及以上,在运行温度时的绝缘电阻值,定子绕组不应低于每千伏1M,转子绕组不应低于每千伏0.5M。绝缘电阻温度换算可按本标准附录二的规定进行。3.
19、我国关于交流电动机绝缘电阻的测量要求 2)1000V及以上的电动机应测量吸收比。吸收比不应低于1.2,中性点可拆开的应分相测量。注:进行交流耐压试验时,绕组的绝缘应满足本条第一、二款的要求。交流耐压试验合格的电动机,当其绝缘电阻值在接近运行温度、环氧粉云母绝缘的电动机则在常温下不低于其额定电压每千伏1M时,可以投入运行。但在投运前不应再拆开端盖进行内部作业。3.我国关于交流电动机绝缘电阻的测量要求(2)测量电动机轴承的绝缘电阻,当有油管路连接时,应在油管安装后,采用1000V兆欧表测量,绝缘电阻值不应低于0.5M。4.绝缘诊断的程序 6.大型电机定子绕组绝缘诊断性试验纵览 n测量绝缘系统整体性
20、的直接方法是直流、交流和(或)冲击耐压的击穿强度试验.n目前对新机和在役机组普遍采用的诊断性试验主要包括:n绝缘电阻及极化指数、n直流耐压及泄漏电流试验、n交流耐压试验、n介损增量试验、n局部放电测量;n另外还有手包绝缘表面对地电位试验、槽放电试验、紫外光检测电晕试验等。6.大型电机定子绕组绝缘诊断性试验(1)绝缘电阻及极化指数绝缘电阻及极化指数n影响绝缘电阻值的主要因素包括:表面杂质(油污、绝缘表面受潮的粉尘、防晕层等)、湿度、温度、试验电压幅值、剩余电荷。n该试验对于发现绕组脏污和吸潮发现绕组脏污和吸潮是非常好的方法,当然也能够发现绝缘裂缝或穿透性绝缘故障。6.大型电机定子绕组绝缘诊断性试
21、验(2)交流耐压试验)交流耐压试验n交流耐压的试验目的是发现绕组中的贯穿性缺陷。n其基本出发点是:如果绕组在高于运行电压的耐压试验中未发生故障,当其投入运行时绕组应不会很快发生因绝缘老化而导致的故障。n由于交流耐压试验中绝缘系统的应力分布与运行中相同,因此更易于找到在系统有相对地故障时、非故障相过电压可能导致的定子故障。n耐压试验的结果是通过或未通过,没有其他评估信息。6.大型电机定子绕组绝缘诊断性试验(3)直流耐压及泄漏电流试验)直流耐压及泄漏电流试验n交流耐压试验中绝缘系统的应力分布取决于电容,n直流耐压时电压的分布取决于绝缘系统各部分的绝缘电阻,绝缘电阻小的部位承受电压也低。6.大型电机
22、定子绕组绝缘诊断性试验(4)介损增量试验)介损增量试验n介损试验:是用于确定高压定子线圈中是否发生局部放电的间接方法,n由于局部放电大小可反映发电机绝缘系统劣化的程度,所以从介损增量试验中可以看出绝缘中是否存在比较普遍的缺陷。n理论上,在较低电压时绝缘的介质损耗与电压无关,而当电压升高时,如果主绝缘中存在的空隙发生局放,局放产生的热、光、声所消耗的能量就表现为损耗的异常增加,测量的介损值相应增加,将超过正常因介质损耗而产生的数值。6.大型电机定子绕组绝缘诊断性试验(5)局部放电试验)局部放电试验n局部放电是引起许多定子绕组绝缘故障产生的原因,也是早期故障的重要信号早期故障的重要信号n局放试验是
23、评估定子绕组状态评估定子绕组状态的很重要的一个诊断性试验。n局放脉冲的时间是毫微秒级的,其频谱最高到几百MHzn使用可以测量高频信号的仪器就可以探测到PD脉冲电流。n局放试验的关键是被测量Qm(最高局放脉冲的幅值(最大视在局放量))n按照测量方法的不同有以下几种单位。n1)pC:实验室使用比较多,比较直观;n2)mV:在示波器和脉冲幅值分析仪(PMA)上读取,PMA还可以计算每段幅值脉冲的个数;n3)mA:使用工频TA在示波器上读取;n4)dB(分贝):使用频谱分析仪记录脉冲时使用。6.大型电机定子绕组绝缘诊断性试验(5)局部放电试验)局部放电试验n理论上每个PD 脉冲的幅值与空隙的大小成正比
24、,PD越大说明该缺陷越大。n与介损试验相比,介损反映的是绕组整整体存在空隙体存在空隙的情况,n而最大视在局放量反映的是绕组中最劣最劣化部位化部位的状态。二、电机局部放电诊断(主要针对高压电机)1.电机离线时局部放电测量 n图11-4-30是局部放电测量最基本的原理图n测量系统由施加试验电压试验电压和高频电压检高频电压检测测两部分组成。n外施电压部分:与交流工频耐压试验相同n高频电压检测部分:n局部放电信号:由高频耦合电容器上拾取n测量仪表:局部放电电量仪,测量和记录局部放电电荷量Qmax。1.电机离线时局部放电测量图11-4-30电机局部放电试验线路T1调压器;T2试验变压器;R限流电阻;PT
25、电压互感器;V电压表;M被测电动机;CA、CB耦合电容;L、C测量回路电感电容;V1脉冲峰值电压表 1.电机离线时局部放电测量测得的曲线上:n如放电起始电压Uc较高,则可认为该电机局部放电是正常的;n当放电电量较大,放电起始电压又较低,如图中虚线,则说明电机局部放电现象较严重,需进一步诊断其原因和放电主要部位。n图11-4-31 局部放电曲线 1.电机离线时局部放电测量n图11-4-32 检测电路图 2.发电机局放在线监测系统n组成:系统采用高频宽带电流传感器高频宽带电流传感器、宽带前宽带前置放大电路置放大电路、窄带信号检波窄带信号检波和报警单元、包括DSP信号高速采集模块的工控机和高性能服务
26、器等,组成宽带加窄带的系统硬件配置方式(见图)。n系统的信号源信号源为发电机中性点,在发电机中性线上安装高频宽带电流传感器(CT),在传感器附近配置宽带前置放大电路,传感器的输出信号经宽带前置放大电路进行宽带放大和阻抗匹配后,再利用50同轴电缆将信号送往距现场较远的后级窄带处理单元和宽带处理单元分别处理。2.发电机局放在线监测系统n宽带处理单元宽带处理单元将宽带前置放大器送过来的宽带信号经隔离后送到DSP高速采样系统。n由工控机和服务器对信号进行抗干扰处抗干扰处理理和提取特征参数提取特征参数后存入局放信号特征数据库,n专家系统根据特征数据库中的宽带和窄带历史数据历史数据作出电机绝缘状态的诊断诊
27、断。2.发电机局放在线监测系统图13-5-27 HSB-1型局放在线监测系统结构图第三章电机振动诊断序n对于旋转机械,振动量值是重要的运行状态特征n健康的旋转机械都会有振动n人体的脉搏一样,在正常情况下,脉搏的跳动并不妨碍人体从事各种活动。n当人体内部有病的时候,脉搏就会有各种异常表现。n诊断脉搏的变化可以查知病况,及时给予正确的治疗。n异常振动也是机械内部缺陷的表征。n通过振动的测量分析,揭露出设备内部隐形缺陷一、电机的电磁振动一、电机的电磁振动1.1.定子电磁振动异常主要原因(1)三相交流电机定子异常定子异常产生的电磁振动。(2)气隙静态偏心气隙静态偏心引起的电磁力。(3)气隙动态偏心气隙
28、动态偏心引起电磁振动(偏心的位置对定子是不固定的,对转子是固定的,因此偏心的位置随转子而转动)。(4)转子绕组故障转子绕组故障引起的电磁振动。(5)转子不平衡转子不平衡产生的机械振动。转子不平衡的原因:n电机转子质量分布不均匀n转子零部件脱落和移位n联轴器不平衡,冷却风扇不平衡,皮带轮不平衡n冷却风扇与转子表面不均匀积垢。1.1.定子电磁振动异常主要原因(6)滑动轴承由于油膜涡动油膜涡动产生振动。(7)滑动轴承由于油膜振荡油膜振荡产生振动。(8)加工加工和装配不良装配不良产生振动。(9)安装安装时,轴线不对中不对中引起振动。(10)定子铁心和定子线圈松动(11)电动机座底脚螺钉松动底脚螺钉松动
29、,相当于机座刚度降低。2.定子异常电磁振动定子异常电磁振动(1)原因)原因n定子三相磁场不对称:定子三相磁场不对称:n电网三相电压不平衡电网三相电压不平衡n定子绕组三相不对称等定子绕组三相不对称等n定子铁心和定子线圈松定子铁心和定子线圈松动动n电动机座底脚螺钉松动电动机座底脚螺钉松动2.定子异常电磁振动定子异常电磁振动(2)特征)特征n振动频率为电源频率的振动频率为电源频率的2倍。倍。n切断电源,电磁振动立即消失。这是区切断电源,电磁振动立即消失。这是区分电磁振动与其它振动的基本方法。分电磁振动与其它振动的基本方法。n振动可以在定子机座和轴承上测得。振动可以在定子机座和轴承上测得。n振动与机座
30、刚度和电机的负载有关。振动与机座刚度和电机的负载有关。2.转子绕组不平衡引起电磁振动(1)原因:原因:n笼条铸造质量铸造质量不良,产生断条或高阻n笼形转子因频繁起动频繁起动,电机负载大产生断条或高阻n绕线式绕线式异步电动机的转子绕组回路电气不平衡,产生不平衡电磁力n同步电动机励磁绕组励磁绕组匝间短路。2.转子绕组不平衡引起电磁振动(2)特征:n 与转子动态偏心产生的电磁振动,波形相似,现象相似,较难区别:振动频率为f0/pn在空载或轻载时,振动与节拍噪声不明显;n当负载增大时,这种振动和噪声随之增加n在定子的一次电流中,也产生脉动变化,其脉动节拍频率为2sf。n对定子电流频谱图中,基频两边出现
31、边频。n同步电动机励磁绕组匝间短路,能引起f0/p频率(转频)的电磁振动和噪声n断电后,电磁振动和电磁噪声消失 2.转子绕组不平衡引起电磁振动 图12-2-3 转子绕组不平衡引起电磁振动a)发生振动机理 b)电磁振动波形 3.电动机气隙不均引起的电磁振动 n气隙不均匀(气隙偏心)有两种:n静态不均匀(静态偏心)n动态的不均匀(动态偏心)n它们都会引起电磁振动,但是振动的特征并不完全相同。3.电动机气隙不均引起的电磁振动 静态气隙偏心静态气隙偏心产生的电磁振动特征特征:1)电磁振动频率是电源频率f0的2倍,即f2f0;2)振动随偏心值偏心值的增大而增加3)振动随负载负载增大而增加;4)断电后断电
32、后电磁振动消失;5)气隙偏心产生的电磁振动与定子异常产生的电磁振动较难区别 3.电动机气隙不均引起的电磁振动 气隙动态偏心气隙动态偏心产生电磁振动的特征特征:1)转子旋转频率转子旋转频率和旋转磁场同步频率旋转磁场同步频率的电磁振动都可能出现。2)电磁振动以周期脉动周期脉动,负载增加负载增加,S加大,脉动节拍加快脉动节拍加快。3)发生与脉动节拍相一致的电磁噪声电磁噪声。4)断电后断电后,电磁振动消失,电磁噪声消失。二、电机振动的诊断1.电机振动的电机振动的简易诊断简易诊断n电机的振动简易诊断一般在运行现场现场进行n使用设备通常是便携式测振仪便携式测振仪n定期、定点,单一频段内的总振级的测量n仪器
33、频响范围一般为101000Hz,n对于电机的振动是否正常作出迅速评价二、电机振动的诊断 1.电机振动的简易诊断电机振动的简易诊断 二、转子绕组不平衡引起电磁振动 2.电机振动的精密诊断之一:电机振动的精密诊断之一:利用数据采集器、计算机和专用诊断软件利用数据采集器、计算机和专用诊断软件 二、转子绕组不平衡引起电磁振动 3.电机振动的精密诊断之二:电机振动的精密诊断之二:利用测振和信号分析仪器作精密诊断利用测振和信号分析仪器作精密诊断 三、电动机轴承振动的诊断实例分析 三、电动机轴承振动的诊断实例分析n诊断对象是一台驱动离心式压缩机的异步电动机,容量3400kW,2极,转速2970r/min,电
34、源频率为50Hz,结构上采用整体底板、座式滑动轴承。n简易诊断时,发现轴承和定子振动较大,超过允许值,下面对该电动机进行精密诊断。三、电动机轴承振动的诊断实例分析n图图12-4-6 实例实例1所示异步电动机振动诊断示所示异步电动机振动诊断示意图意图 第四章第四章 电动机故障诊断电动机故障诊断一、电动机常见异常(故障)一、电动机常见异常(故障)1.电动机温升过高1.电动机温升过高2.三相电流不平衡原因:原因:n三相电源电压不平衡n匝间短路n绕组断路(或并联支路中一条或几条支路断路)n定子绕组部分线圈接反n三相匝数不相等3.空载电流偏大原因:原因:n电源电压偏高电源电压偏高n定子定子Y接误接成接误
35、接成接接n转子装错转子装错(极数少的转子装进了极数多的定子内极数少的转子装进了极数多的定子内)n转子直径变小了,气隙偏大转子直径变小了,气隙偏大n铁心导磁性能差铁心导磁性能差n定、转子铁心错位,铁心有效长度减小定、转子铁心错位,铁心有效长度减小n定子绕组每圈匝数绕错定子绕组每圈匝数绕错(少少)n线圈节距嵌错线圈节距嵌错n绕组的线圈组接反绕组的线圈组接反n应串联的线圈组错接成了并联应串联的线圈组错接成了并联n轴承损坏轴承损坏n转轴弯造成定、转子相擦转轴弯造成定、转子相擦n风扇装错风扇装错(如如2极电机装上了极电机装上了4、6极电机风扇极电机风扇)二、定子绕组故障精密诊断二、定子绕组故障精密诊断实
36、例实例.基于三相电流之间的相位差的诊断基于三相电流之间的相位差的诊断1.基于三相电流之间的相位差的诊断基于三相电流之间的相位差的诊断以电流分析法为基础以电流分析法为基础对定子绕组故障的分析对定子绕组故障的分析判据:三相电流之间的相位差判据:三相电流之间的相位差实例实例.基于三相电流之间的相位差的基于三相电流之间的相位差的诊断诊断图图15-4-3正常状态时的电流谱图正常状态时的电流谱图 实例实例.基于三相电流之间的相位差的基于三相电流之间的相位差的诊断诊断图图5-4-4 绕组匝间短路(绕组匝间短路(5匝)时的电流匝)时的电流谱图谱图 实例实例.基于三相电流之间的相位差的基于三相电流之间的相位差的
37、诊断诊断n故障后故障后1、3、5、7次谐波分别次谐波分别增加了增加了6.92dB、14.99dB、5.92dB和和16.44dB。n此外,在基波两侧出现频率分别为此外,在基波两侧出现频率分别为25Hz和和75Hz的边频带的边频带 n所以:电机定子绕组发生匝间短路时,电机定子绕组发生匝间短路时,定子电流中的定子电流中的高次谐波明显增强高次谐波明显增强;绕组;绕组的自感、互感发生变化,三相电流之间的自感、互感发生变化,三相电流之间的的相位差相位差亦发生变化亦发生变化。实例实例.基于三相电流之间的相位差的基于三相电流之间的相位差的诊断诊断n互相关分析:互相关分析:实例实例.基于三相电流之间的相位差的
38、基于三相电流之间的相位差的诊断诊断n定子电流互相关分析:定子电流互相关分析:n正常正常 故障故障 实例实例.基于三相电流之间的相位差的基于三相电流之间的相位差的诊断诊断n互相关分析结果:互相关分析结果:n相位差由相位差由6.48ms变为变为7.73ms,即相位,即相位差由故障前的差由故障前的116.1变为故障后的变为故障后的139.1。四、转子绕组故障精密诊断四、转子绕组故障精密诊断(结合文章发表的讲)(结合文章发表的讲)1.1.基于稳态电流基于稳态电流n转子断条是笼型异步电动机转子断条是笼型异步电动机常见故障常见故障之之一一n当发生转子断条故障时,在定子电流中当发生转子断条故障时,在定子电流
39、中将出现频率的将出现频率的 附加电附加电流分量流分量n这一频率的电流分量为转子断条故障的这一频率的电流分量为转子断条故障的特征分量。特征分量。n因为定子电流信号易于采集,所以,基因为定子电流信号易于采集,所以,基于快速傅里叶变换于快速傅里叶变换(FFT)的定子电流信号频的定子电流信号频谱分析方法被广泛应用于转子断条故障的谱分析方法被广泛应用于转子断条故障的在线检测。在线检测。实例实例1.1.基于稳态电流基于稳态电流实例实例2.2.基于起动电流基于起动电流实例实例3.3.起动电流特殊分量起动电流特殊分量实例实例4.4.失电残压失电残压实例实例4.4.失电残压失电残压第五章第五章 发电机故障诊断发电机故障诊断一、定子绕组接地一、定子绕组接地二、定子绕组接地二、定子绕组接地n一、直流电桥法寻找定子绕组接地故障一、直流电桥法寻找定子绕组接地故障n二、单开口变压器法寻找定子绕组接地二、单开口变压器法寻找定子绕组接地故障故障此课件下载可自行编辑修改,仅供参考!此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢感谢您的支持,我们努力做得更好!谢谢
限制150内