激光加工智能装备公司企业风险管理规划_参考.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《激光加工智能装备公司企业风险管理规划_参考.docx》由会员分享,可在线阅读,更多相关《激光加工智能装备公司企业风险管理规划_参考.docx(69页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、泓域/激光加工智能装备公司企业风险管理规划激光加工智能装备公司企业风险管理规划xx投资管理公司目录一、 产业环境分析4二、 行业面临的机遇与挑战4三、 必要性分析7四、 损失程度的估计8五、 概率的基本概念12六、 变动程度的测定15七、 中心趋势测量16八、 风险衡量的理论基础18九、 风险衡量的概念19十、 保险的代价21十一、 保险的选择与购买22十二、 建立意外损失基金29十三、 筹集外部资金32十四、 评价损失程度的几个概念33十五、 确定风险评价标准需要考虑的因素34十六、 风险度评价法36十七、 风险价值法(VaR)37十八、 风险评价的概念和特点44十九、 风险评价的目标46二
2、十、 项目基本情况46二十一、 人力资源分析52劳动定员一览表53二十二、 SWOT分析54二十三、 发展规划65一、 产业环境分析到“十三五”末,力争实现经济增长、发展质量效益、生态环境在省市争先进位;地区生产总值比2010年增加1.5倍以上、城乡居民人均可支配收入比2010年增加1.5倍以上;是到2020年确保如期全面建成小康社会。二、 行业面临的机遇与挑战1、面临的机遇(1)政策支持促进行业发展激光产业和智能制造装备产业均为国家鼓励发展的产业,相关部门出台了一系列的产业支持政策。如中国制造2025提出“加快发展智能制造装备和产品”,“十三五”先进制造技术领域科技创新专项规划提出“面向航空
3、航天、高端装备、电子制造、新能源、新材料、医疗仪器等战略新兴产业的迫切需求,实现高端产业激光制造装备的自主开发,形成激光制造的完整产业体系,促进我国激光制造技术与产业升级,大力提升我国高端激光制造技术与装备的国际竞争力”;中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要提出“深入实施智能制造和绿色制造工程,发展服务型制造新模式,推动制造业高端化智能化绿色化”等。国家政策支持为激光和智能制造装备产业创造了良好的发展环境,有利于行业内企业做大做强。(2)新能源车大势所趋,锂电设备需求旺盛新能源汽车是汽车行业未来的发展趋势,也是实现“碳达峰、碳中和”目标的重要环节,在政策的大
4、力支持下,近年来新能源汽车产销量持续高速上涨,动力锂电池及锂电设备的市场需求也随之增加。根据高工产研锂电研究所(GGII)数据,2021年全球锂电设备市场规模达到750亿元,预计到2025年,全球锂电设备市场规模有望达3,100亿元,2021-2025年,年复合增长率为42.59%,增长较快。(3)大圆柱锂电池需求增加为全极耳设备创造发展机遇从全球市场来看,海外市场长期使用圆柱电池,圆柱电池市场渗透率显著高于国内。一致性高、安全性好、成本优势明显的圆柱全极耳电池已经成为特斯拉、宝马、松下、LG、亿纬锂能、蜂巢能源等全球巨头的一致选择,电池全极耳化发展趋势逐步显现,并面临迫切量产需求。随着锂电设
5、备全球化发展与圆柱全极耳电池全球量产加速,圆柱全极耳电池设备有望成为锂电设备的新增长极。(4)激光加工设备渗透率持续提升作为一种先进的加工技术,激光加工相比传统机械加工,具有加工精度高、加工速度快和表面形变小等特性,且能够和自动化控制技术深度融合,实现生产加工过程的自动化、智能化。此外,激光加工过程中无刀具磨损、噪音较小、环境友好,符合制造技术绿色化发展趋势。在智能制造逐步普及和环保政策日益收紧的大环境下,激光加工设备正逐步对传统机械加工设备实现替代,激光加工设备渗透率持续提升,应用场景不断丰富。2、面临的挑战(1)智能激光加工设备的大范围普及尚需时日尽管相比传统机械加工,激光加工具有加工精度
6、高、加工速度快、表面形变小,且能够和自动化控制技术深度融合等优良特性,但其初始投入也相对较高。同时,智能激光加工设备的使用还涉及人机交互、数据分析等方面,对操作人员的专业水平要求也较高。因此,目前智能激光加工设备主要应用于产品加工精度要求高、人才储备充足的新兴高科技产业,如锂电池、半导体等。对于产品加工精度要求不高、资金实力有限、人才储备不足的大部分中小企业而言,智能激光加工设备的吸引力有限,智能激光加工设备在整个制造业的大范围普及尚需时日。(2)智能制造装备上游核心部件仍依赖进口智能制造装备是先进制造技术、信息技术和智能技术的集成和深度融合的产物,其核心部件包括工业机器人、伺服电机及驱动、芯
7、片、激光器、高精度传感器等。近年来,在政策的支持下,我国智能制造装备及其核心零部件产业发展迅速,部分核心部件已经实现自主生产、进口替代,但仍有一部分的核心部件依赖进口,进口核心部件增加了我国智能制造装备的生产成本,降低了市场竞争力,在一定程度上制约我国智能制造装备产业的发展。三、 必要性分析1、现有产能已无法满足公司业务发展需求作为行业的领先企业,公司已建立良好的品牌形象和较高的市场知名度,产品销售形势良好,产销率超过 100%。预计未来几年公司的销售规模仍将保持快速增长。随着业务发展,公司现有厂房、设备资源已不能满足不断增长的市场需求。公司通过优化生产流程、强化管理等手段,不断挖掘产能潜力,
8、但仍难以从根本上缓解产能不足问题。通过本次项目的建设,公司将有效克服产能不足对公司发展的制约,为公司把握市场机遇奠定基础。2、公司产品结构升级的需要随着制造业智能化、自动化产业升级,公司产品的性能也需要不断优化升级。公司只有以技术创新和市场开发为驱动,不断研发新产品,提升产品精密化程度,将产品质量水平提升到同类产品的领先水准,提高生产的灵活性和适应性,契合关键零部件国产化的需求,才能在与国外企业的竞争中获得优势,保持公司在领域的国内领先地位。四、 损失程度的估计风险损失程度是指风险事故可能造成的损失值,即风险价值。在衡量风险损失程度时,除了需要考虑风险单位的内部机构、用途、消防设施等以外,还需
9、要考虑以下几方面的因素:损失形态、损失频率、损失金额和损失的时间。(一)同一原因所致各种形态的损失同一原因导致的多形态的损失,不仅要考虑风险事件所致的直接损失,而且还要考虑风险事件引起的其他相关的间接损失。一般来说,间接损失比直接损失更严重。例如,尽管汽车碰撞发生的次数大于因碰撞所致的潜在损失,但是因责任诉讼所致的责任损失往往大于汽车因碰撞所致的损失,因此,一般来说,汽车责任风险的所致损失大于财产损失风险。(二)单一风险事件所涉及的损失单位数单一风险事件所引起损失的单位越多,其损失就越严重,损失程度和风险单位数大多呈正相关关系。(三)损失的时间一般来说,风险事件发生的时间越长,损失频率越大,损
10、失的程度也就越大。估计损失程度不仅要考虑损失的金额,还要考虑损失的时间价值。(四)损失金额一般情况下,损失金额直接显示损失程度的大小,损失金额越大,损失程度就越大。在一些特殊的情况下,损失金额的大小使损失频率、损失时间的估计变得微不足道。1、单次风险事故所致损失金额单次风险事故所致的损失金额一般来说不能全部列举出来,它可以在某一区间内取值,因此它是连续型随机变量。对于损失金额的概率分布,很多经验数据表明可以利用正态分布、对数正态分布、帕累托分布等来进行拟合估计。2、一定时期总损失一定时期总损失是指在已知该时期内损失次数概率分布和每次损失金额概率分布的基础上所求的损失总额。一定时期总损失金额为发
11、生一次损失时的损失额,加上2次损失发生时的损失额,等等。为简单起见,以例子说明。3、随机模拟法的应用现实中,企业财产损失次数的分布和损失程度的分布可能是比较复杂的,所以以上逐个分析各种可能的方法太烦琐,甚至是不可能的。在这种情况下,就要应用到随机模拟的方法。随机模拟法是一种仿真的方法,通过产生随机数的方法,模拟企业财产在较长时间内(如100年)发生损失的情况,从中得到年总损失额的分布。具体过程是:首先规定随机数大小与损失次数的关系、随机数大小与损失程度的关系,然后开始第一轮模拟。产生一个随机数,看其代表的损失次数,假如这个随机数代表该年发生N次损失,则再生成N个随机数,对应于每次损失中的损失额
12、,把这N个损失额累加起来,就得到了第一轮模拟中的损失额。接下来开始第2轮,第3轮,一直模拟下去,直到达到要求的轮数。这样就可以得到年总损失额的概率分布。当然,由于总的模拟轮数偏少,表中的结果是不准确的。在这种少轮次模拟中出现的损失额其概率是偏高的。在实践中,可以采用计算机进行模拟的计算,因而可以进行上万轮的模拟计算,以得到比较可靠的模拟结果。4、均值和标准差的估算有时人们只关心损失幅度的某个特征值,如均值和标准差。这时就可以直接对总体均值和标准差进行区间估算。不同的数据量,采用的方法也不同。(1)样本容量较大,已知样本均值和抽样误差,估计总体均值。(2)样本容量较小,总体为正态分布而o未知时,
13、估计总体均值。(3)样本容量较小,总体为正态分布时,估计总体方差。(五)所需暴露单位数量的估算根据大数定律可知,随着暴露单位的数量趋于无穷大,实际的损失频率将会趋近于期望的真实损失频率。但在实际中,一个组织的暴露单位的数量绝不可能无穷大,大多数情况下这是一个有限的数字。而且在很多情况下,这个数字几乎称不上“大”。因此,就存在这样一个问题:当样本不够充分大时,会导致多大的错误?也就是说,风险评估并不是百分之百地以一种概率的说法对未来进行预测,尽管概率就已经体现了不确定性,但实际中由于许多统计原理所需的条件不能满足,这种预测本身也带有一定的不确定性。对于这种情况,风险经理可能会有另一种问法:“为了
14、有95%的把握使最大可能损失的估计值与真实值的差别不超过5%,必须有多少暴露单位?”或者说,如果风险管理者希望有(1a)的把握保证,企业面临的某种实际损失率与给定的预期损失率之差的变动程度不超过E,则风险单位数要多大才能满足上述要求?在回答这个问题时,我们假设损失是以二项分布假定的方式发生的,即风险单位发生损失是相互独立的,并且每个风险单位损失发生的概率不变。这样,当n足够大时,损失近似服从正态分布。从以上影响损失的因素可以看出,风险的大小取决于损失的程度而不是损失发生的频率。风险是损失的不确定性,风险事件导致的损失频率和损失程度的大小具有随机性,损失频率和损失程度是衡量风险的两个重要指标。但
15、是,风险的大小主要取决于损失的程度而不是损失的概率。五、 概率的基本概念随机事件可能导致不同的结果发生,各种结果发生的可能性可能相同,也可能不同。问题是如何度量随机事件中各种不同结果发生可能性的大小。在统计学中,用“概率”这样一个概念来度量随机事件中某一结果发生的可能性大小。随机事件中某一结果发生的次数占所有结果发生的次数的比率就是该结果发生的概率。损失概率越高,表明事故发生越频繁;损失概率越低,表明事故很少发生。在运用概率衡量风险时,应该考虑以下几方面的因素。运用概率衡量风险是在假设风险发生事件的条件不变的情况下估算的。如果发生风险事故的条件发生变化,则根据以往发生事故统计资料预测的风险,就
16、不一定代表未来风险事故发生的情况。确定风险事件的观察期。一般来说,观察现实风险事故发生的资料,需要确定一个考察期。考察期限越长,越能够说明发现事故发生的大致情况;考察期限越短,越无法说明风险事故发生的大致情况。风险的衡量具有时间单位的限制。如果选择20年的风险事故统计资料作为观察期,估算每年发生风险事故的概率,则损失的概率就是每年损失的平均值。损失的大致范围。确定损失频率或者损失程度的大致范围,实际上是确定事故造成损失的大致范围,确定事故的期望损失和最大可能损失。概率有古典概率、试验概率和主观概率之分。古典概率的方法是当随机事件中各种可能发生的结果及其发生的次数都可以由演绎或外推法得知,因此无
17、须任何统计试验即可计算各种可能发生结果的概率的一种方法。按古典概率方法计算的概率,称为古典概率。古典概率的基本特点是:可知性,即随机事件所有可能发生的结果及其发生的次数可以通过演绎法或外推法得知;无须试验,即不必做统计试验即可计算各种可能发生结果的概率;准确性,即依古典概率方法计算的概率是没有误差的。试验概率的方法是根据大量的,重复的统计实验结果计算随机事件各种可能发生结果的频率,视频率为概率的一种方法。如上例某公司车队在过去一年发生事故的例子。试验概率的基本特点是:实验性,即必须经过统计试验结果才能计算各种结果出现的频率,即试验概率;大量重复性,即试验次数必须足够大,重复进行每次试验的条件和
18、程序必须相同;误差性,即每做一轮(100次或1000次)试验,各种结果出现的频率都可能各不相同。这种现象表明频率只是概率的逼近值或估计值,因此存在误差。从理论上来说,当试验次数不断增大时,这种误差归于消失,频率将近似于概率。主观概率的方法是依据个人对随机事件的认识,主观地确定随机事件中各种可能发生结果的概率的一种方法。在实践中,有的随机事件既不能按古典概率法,也不能按试验概率法计算其各种可能发生结果的概率,因而不得不依靠决策者的主观估计来决定概率。主观概率具有以下几方面的特点:风险管理者对风险认识的态度决定主观概率;风险管理者搜集的信息决定主观概率;主观概率是在无法对事件作长期观察和试验的情况
19、下作出的主观判断。例如,甲乙两个球队实力相当,如果要预测甲乙两个球队的胜负,只有凭借主观概率。频率和概率都是一个介于0和1之间的数,它们之间的关系,事实上就是试验概率与古典概率之间的关系。当被研究对象是总体的全部单位时,频率就是概率;当被研究对象是总体的部分单位(即样本)时,频率只是试验概率。因此可以说,概率是频率的期望值或理论值,频率只是概率的估计值或试验值。在试验次数或抽样次数非常大时,频率逼近概率。六、 变动程度的测定衡量风险大小取决于不确定性的大小,取决于实际损失偏离预期损失的程度,而不确定性的大小可以通过对发生损失距离期望的偏差来确定,即风险度。风险度是衡量风险大小的一个数值,这个数
20、值是根据风险所致损失的概率和一定规则的计算得到的。风险度越大,就意味着对将来越没有把握,风险就越大;反之,风险就越小。(一)方差和标准差对于随机变量X,如果X1,X2,Xn是随机变量的n个观测值,X是随机变量的算术平均数,称(Xi-X)2(i=1,2,n)为观测值Xi的平方偏差,称(X1-X)2,(X2-X)2,. ,(Xi- X)2的算术平均数为这组数据的平均平方偏差,简称方差(或均方差)。方差的算术平方根是标准差或根方差。标准差是衡量测量值与平均值离散程度的尺度,标准差越大,数据就越分散,损失波动的幅度就越大,较大损失出现的可能性就越大。(二)变异系数风险的稳定性可以通过变异系数反映出来。
21、变异系数越大,风险的稳定性越弱,风险也就越大;相反,风险的稳定性越强,损失的风险越小。变异系数是标准差与均值或期望值的比例,也称标准差系数或平均偏差系数。风险衡量中,风险的稳定性对衡量具有重要意义。某一事故偏离预期损失的方差越大,管理人员就越担心,损害也就越大。对变异系数的大小没有统一的规范,可以根据需要在一定幅度内灵活确定。一般情况下,变异系数越小,则偏差就越小,据此制定的风险管理策略就越可靠,重大风险事故发生的可能性就越小。(三)偏态前面讲过平均数与中位数的概念,在这两个指标相等的情况下,变量的频数分布呈对称分布,即没有偏态。当中位数与平均数不相等时,分布就会出现偏态。当中位数大于平均数时
22、,表明分布聚集于左边而向右边偏斜。当中位数小于平均数时,表明分布聚集于右边而向左边偏斜。七、 中心趋势测量中心趋势测量是确定风险概率分布中心的重要方法。在各种不同的测量方法中,主要有以下几种方法。(一)算术平均数算术平均数是指用平均数表示的统计指标,分为总体的一般平均指标和时序平均指标。一般平均指标是指同质总体内某个数量标志(在一定时间内)的平均值;时序平均指标是某一个统计指标在不同时间的数量平均值。(二)加权平均数加权平均数(期望值)是用每一项目或事件的概率加权平均计算出来的。(三)中位数衡量损失、预测损失的另一种方法是计算中位数。中位数也称值,位于数据的中心位置。(四)众数众数是一种根据位
23、置确定的平均数。顾名思义,众数就是分布数列中最常出现的变量值,即频数或频率最大的变量X的观测值。数列中最常出现的变量的观测值说明该变量观测值最具有代表性,因此以之反映变量的一般水平。众数具有这样的特点:众数是一种位置平均数,它不受数列中各单位变量观测值的影响,因此难以准确地反映数列变量观测值的平均水平。但是,当数列中有异常变量观测值时,它不受数列两端异常变量观测值的影响,增强其作为变量观测值数列的一般水平的代表性。由于众数是频数最大的变量观测值,因此,当分布数列没有明显的集中趋势而趋于均匀分布的情况下,就无众数可言了。如果分布数列有多个众数出现就应重新分组,或将各组频数依序双双合并,求得一个有
24、明显集中趋势的分布数列,然后再确定众数。八、 风险衡量的理论基础(一)大数法则大数法则为风险衡量奠定了理论基础,即只要被观察的风险单位多,就可以对损失发生的频率、损失的严重程度进行衡量。被观察的风险数量越多,预测的损失就越可能接近实际发生的损失。(二)概率推理原理单个风险事故是随机事件,事件发生的时间、空间、损失严重程度都是不确定的。但是,就总体而言,风险事故的发生又会呈现出某种统计的规律性。运用概率论和数理统计方法,可以推断出风险事故出现状态的各种概率。(三)类推原理数理统计学为从部分去推断总体提供了非常成熟的理论和众多有效的方法。利用类推原理衡量风险的优点是,能够弥补事故统计资料的不足。在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 激光 加工 智能 装备 公司企业 风险 管理 规划 参考
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内