中考数学动点问题专题讲解(优选)(共8页).doc
《中考数学动点问题专题讲解(优选)(共8页).doc》由会员分享,可在线阅读,更多相关《中考数学动点问题专题讲解(优选)(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上动点及动图形的专题复习教案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力图形在
2、动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研
3、究对策,把握方向只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式)如图1,在半径为6,圆心角为90的扇形OAB的弧AB上,有一个动点P,PHOA,垂足
4、为H,OPH的重心为G.(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH,GP,求关于的函数解析式,并写出函数的定义域(即自变量的取值范围).HMNGPOAB图1(3)如果PGH是等腰三角形,试求出线段PH的长.解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH=NH=OP=2.(2)在RtPOH中, , .在RtMPH中,.=GP=MP= (06).(3)PGH是等腰三角形有三种可能情况:GP=PH时,解得. 经检验, 是原方程的根,且符合题意.
5、GP=GH时, ,解得. 经检验, 是原方程的根,但不符合题意.PH=GH时,.综上所述,如果PGH是等腰三角形,那么线段PH的长为或2.二、应用比例式建立函数解析式 例2如图2,在ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=. (1)如果BAC=30,DAE=105,试确定与之间的函数解析式; AEDCB图2 (2)如果BAC的度数为,DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由.解:(1)在ABC中,AB=AC,BAC=30, ABC=ACB=75, ABD=ACE=105.BAC=30,DAE=105, DAB+CAE=75,
6、 又DAB+ADB=ABC=75, CAE=ADB, ADBEAC, , , .(2)由于DAB+CAE=,又DAB+ADB=ABC=,且函数关系式成立,=, 整理得.当时,函数解析式成立.如三、应用求图形面积的方法建立函数关系式ABCO图8H例4()如图,在ABC中,BAC=90,AB=AC=,A的半径为1.若点O在BC边上运动(与点B、C不重合),设BO=,AOC的面积为.(1)求关于的函数解析式,(2)以点O为圆心,BO长为半径作圆O,求当O与A相切时,AOC的面积.解:(1)过点A作AHBC,垂足为H.BAC=90,AB=AC=, BC=4,AH=BC=2. OC=4-., ().(2
7、)当O与A外切时,在RtAOH中,OA=,OH=, . 解得.此时,AOC的面积=.当O与A内切时,在RtAOH中,OA=,OH=, . 解得.此时,AOC的面积=.综上所述,当O与A相切时,AOC的面积为或.专题二:动态几何型压轴题动态几何特点-问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
8、一、以动态几何为主线的(二)线动问题在矩形ABCD中,AB3,点O在对角线AC上,直线l过点O,且与AC垂直交AD于点E.(1)若直线l过点B,把ABE沿直线l翻折,点A与矩形ABCD的对称中心A重合,求BC的长;ABCDEOlA(2)若直线l与AB相交于点F,且AOAC,设AD的长为,五边形BCDEF的面积为S.求S关于的函数关系式,并指出的取值范围;探索:是否存在这样的,以A为圆心,以长为半径的圆与直线l相切,若存在,请求出的值;若不存在,请说明理由题型背景和区分度测量点ABCDEOlF本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到第一小题考核了学生轴对称、矩形、勾股定理三小块
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 问题 专题 讲解 优选
限制150内