集合与不等式难题分析.doc
《集合与不等式难题分析.doc》由会员分享,可在线阅读,更多相关《集合与不等式难题分析.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章 集合与命题 考点综述集合与命题是高中数学的基石,高考对这部分知识的考查主要有三个方面:一是集合的概念、关系和运算;二是集合语言与集合思想的运用(如求方程与不等式的解集、函数的定义域和值域等);三是命题之间的逻辑关系的判断和推理此外与集合有关的信息迁移题、集合与其他知识相结合的综合题都值得高度关注.考查重点是集合与集合之间的关系、条件的判断.其核心考点有:集合的概念及相应关系,集合的运算,命题及充要条件 考点1 集合的概念及相应关系典型考法1 与含参数的方程有关的集合问题 已知集合(1)若A是空集,试求a的取值范围;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多
2、只有一个元素,求a的取值范围必杀技:用分类讨论的方法解决集合中含参数的方程问题一般地,对于集合,其中,均为实数,当a0时,是一元二次方程的根的集合须注意:若求非空集合中的元素之和,则应分与这两种情形,具体为(1)若,则有两个不等的实根,于是,非空集合中的元素之和为;(2)若,则有两个相等的实根,于是,非空集合中的元素之和为实战演练1 已知为单元素集,则实数的取值的集合为 2设A=xx2+(b+2)x+b+1=0,bR,求A中所有元素的和3对于函数f(x),设,(1) 求证:;(2) 若,且,求a的取值范围典型考法2 集合对某种运算的封闭性 典型例题设(1)属于的两个整数,其积是否仍属于,为什么
3、?(2)、是否属于,请说明理由必杀技 深刻理解集合中的元素所具有的性质1要证明 ,通常应是将运算后得到的结果化为集合中元素所有的特征形式2要证明,通常用反证法实际上,本题还可得到进一步的结果:对任意均为中的元素,而不是中的元素实战演练1设非空集合满足:当时,有给出如下三个命题:若,则;若,则;若,则其中正确命题的个数是().A0 B1 C2 D32已知(1)如果,那么是否为的元素,请说明理由;(2)当且时,证明:可表为两个有理数的平方和3已知集合,其中,由中的元素构成两个相应的集合:,其中是有序数对,集合和中的元素个数分别为和若对于任意的,总有,则称集合具有性质(I)检验集合与是否具有性质并对
4、其中具有性质的集合,写出相应的集合和;(II)对任何具有性质的集合,证明:;(III)判断和的大小关系,并证明你的结论 考点2 子集、集合中的图形典型考法1 子集典型例题设为集合的子集,且,若,则称为集合的元“好集”(1)写出实数集的一个二元“好集”;(2)求出正整数集的所有三元“好集”;(3)证明:不存在正整数集的元“好集”必杀技 充分利用所给条件1深刻理解概念并其中所给出条件;2在含参数的集合的问题中,往往不能遗漏是的一种情况实际上,在本例中也不存在正整数集的二元“好集”,读者可自行完成期证明过程实战演练1若规定=的子集为的第个子集,其中,则(1)是E的第 个子集; (2)的第211个子集
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 集合 不等式 难题 分析
限制150内