数学解题方法与技巧数学思想方法总结.doc
《数学解题方法与技巧数学思想方法总结.doc》由会员分享,可在线阅读,更多相关《数学解题方法与技巧数学思想方法总结.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学解题方法技巧一、换元法 “换元”的思想和方法,在数学中有着广泛的应用,灵活运用换元法解题,有助于数量关系明朗化,变繁为简,化难为易,给出简便、巧妙的解答。 在解题过程中,把题中某一式子如f(x),作为新的变量y或者把题中某一变量如x,用新变量t的式子如g(t)替换,即通过令f(x)=y或x=g(t)进行变量代换,得到结构简单便于求解的新解题方法,通常称为换元法或变量代换法。 用换元法解题,关键在于根据问题的结构特征,选择能以简驭繁,化难为易的代换f(x)=y或x=g(t)。就换元的具体形式而论,是多种多样的,常用的有有理式代换,根式代换,指数式代换,对数式代换,三角式代换,反三角式代换,复
2、变量代换等,宜在解题实践中不断总结经验,掌握有关的技巧。 例如,用于求解代数问题的三角代换,在具体设计时,宜遵循以下原则:(1)全面考虑三角函数的定义域、值域和有关的公式、性质;(2)力求减少变量的个数,使问题结构简单化;(3)便于借助已知三角公式,建立变量间的内在联系。只有全面考虑以上原则,才能谋取恰当的三角代换。 换元法是一种重要的数学方法,在多项式的因式分解,代数式的化简计算,恒等式、条件等式或不等式的证明,方程、方程组、不等式、不等式组或混合组的求解,函数表达式、定义域、值域或最值的推求,以及解析几何中的坐标替换,普通方程与参数方程、极坐标方程的互化等问题中,都有着广泛的应用。例1 分
3、解因式:(x2-x-3)(x2-x-5)-3例2 在实数集上解方程:例3 设sinx+siny=1,求cosx+cosy的取值范围.例4 设x,yR,且,求函数f(x,y)=x2+2xy+y2+x+2y的最小值和最大值。二、消元法 对于含有多个变数的问题,有时可以利用题设条件和某些已知恒等式(代数恒等式或三角恒等式),通过适当的变形,消去一部分变数,使问题得以解决,这种解题方法,通常称为消元法,又称消去法。 消元法是解方程组的基本方法,在推证条件等式和把参数方程化成普通方程等问题中,也有着重要的应用。 用消元法解题,具有较强的技巧性,常常需要根据题目的特点,灵活选择合适的消元方法。例1 解方程
4、组: x+1=y x-y-z=6 例2 解方程组: y-z-x=0 z-x-y= -12例3、设a,b,c均为不等于1的正数,若 ax=by=cz 求证: abc=1三、待定系数法 按照一定规律,先写出问题的解的形式(一般是指一个算式、表达式或方程),其中含有若干尚待确定的未知系数的值,从而得到问题的解。这种解题方法,通常称为待定系数法;其中尚待确定的未知系数,称为待定系数。 确定待定系数的值,有两种常用方法:比较系数法和特殊值法。一、 比较系数法 比较系数法,是指通过比较恒等式两边多项式的对应项系数,得到关于待定系数的若干关系式(通常是多元方程组),由此求得待定系数的值。 比较系数法的理论根
5、据,是多项式的恒等定理:两个多项式恒等的充分必要条件是对应项系数相等,即a0xn+a1xn-1+ +anb0xn+b1xn-1+ +bn 的充分必要条件是 a0=b0, a1=b1, an=bn 。 二、 特殊值法 特殊值法,是指通过取字母的一些特定数据值代入恒等式,由左右两边数值相等得到关于待定系数的若干关系式,由此求得待定系数的值。 特殊值法的理论根据,是表达式恒等的定义:两个表达式恒等,是指用字母容许值集内的任意值代替表达式中的字母,恒等式左右两边的值总是相等的。 待定系数法是一种常用的数学方法,主要用于处理涉及多项式恒等变形问题,如分解因式、证明恒等式、解方程、将分式表示为部分分式、确
6、定函数的解析式和圆锥曲线的方程等。例1 设二次函数的图象通过点A(-1,0),B(7,0),C(3,-8),求此二次函数的解析式。例2 以x-1的幂表示多项式 x3-x2+2x+2。例3 分解因式:6x2+xy-2y2+x+10y-12.四、判别式法 实系数一元二次方程 ax2+bx+c=0 (a0) 的判别式=b2-4ac具有以下性质: 0,当且仅当方程有两个不相等的实数根 0,当且仅当方程有两个相等的实数根; 0,当且仅当方程没有实数根。对于二次函数 y=ax2+bx+c (a0)它的判别式=b2-4ac具有以下性质: 0,当且仅当抛物线与x轴有两个公共点; 0,当且仅当抛物线与x轴有一个
7、公共点; 0,当且仅当抛物线与x轴没有公共点。 利用判别式是中学数学的一种重要方法,在探求某些实变数之间的关系,研究方程的根和函数的性质,证明不等式,以及研究圆锥曲线与直线的关系等方面,都有着广泛的应用。 在具体运用判别式时,中的系数都可以是含有参数的代数式。例1 已知关于x的二次方程x2+px+q=0有两正根求证:对于一切实数r0,方程qx2+(p-2rq)x+1-p=0也必有两正根。例2、 x,y,zR, aR+,且 x+y+z=a, x2+y2+z2=a2 试确定x,y,z的取值范围。例3、 已知a,x为实数,|a|0)(1) 写出y关于x的函数关系式,并指出这个函数的定义域。(2) 求
8、鱼群年增长量的最大值。例4:某公司有资金100万元,董事会决定全部投资到甲、乙两工厂,投资甲厂可获得的利润为投资额的20%;投资乙厂可获得的利润由公式M=(M为利润额,x为投资额,单位均为万元)确定,问公司如何分配100万元资金投资这两个工厂,使获得利润最大?最大利润是多少?作业:1、 设x的二次方程x2-2x+lg(2a2-a)=0有一正根和一负根,求a的范围。2、(1994年高考题)在测量某物理的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2, an共n 个数据。我们规定所测物理量的“最佳近似值”a是这样一个量:与其它近似值比较,a与各数据的差的平方和最小,依此规定,从a1 ,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 解题 方法 技巧 思想 总结
限制150内