电子显微分析.ppt
《电子显微分析.ppt》由会员分享,可在线阅读,更多相关《电子显微分析.ppt(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、电子显微分析 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望 基本内容n1 电镜的结构与成象n2 电镜中的电子衍射及分析 1)斑点花样(原理、实验方法、指数标定及应用)2)菊池线花样(原理、指数标定、应用)3)会聚书束花样(原理、实验方法、指数标定及应用)n3 电镜显微图象解释 1)复形象 2)衍衬象 3)相位象n4 扫描电子显微术n5 X射线显微分析和俄歇能谱分析2第一章 电镜的结构与成象1.1 光学显微镜的局限性 1)一个世纪以来,人们一直用光学显微镜来揭示金
2、属材料的显微组织,借以弄清楚组织、成分、性能的内在联系。但光学显微镜的分辨本领有限,对诸如合金中的G.P 区(几十埃)无能为力。2)最小分辨距离计算公式 其中 最小分辨距离 波长 透镜周围的折射率 透镜对物点张角的一半,称为数值孔径,用 N.A 表示3 3)由于光的衍射,使得由物平面内的点O1、O2 在象平面形成一B1、B2圆斑(Airy斑)。若O1、O2靠的太近,过分重叠,图象就模糊不清。O1O2dLB2B1Md强度D图(a)点O1、O2 形成两个Airy斑;图(b)是强度分布。(a)(b)4图(c)两个Airy斑明显可分辨出。图(d)两个Airy斑刚好可分辨出。图(e)两个Airy斑分辨不
3、出。I0.81I54)对于光学显微镜,N.A的值均小于1,油浸透镜也只有1.51.6,而可见光的波长有限,因此,光学显微镜的分辨本领不能再次提高。5)提高透镜的分辨本领:增大数值孔径是困难的和有限的,唯有寻找比可见光波长更短的光线才能解决这个问题。1.2 电子的波长 比可见光波长更短的有:1)紫外线 会被物体强烈的吸收;2)X 射线 无法使其会聚;3)电子波 根据德布罗意物质波的假设,即电子具有微粒性,也具有波动性。电子波 6 h Plank 常数,m v 电子速度显然,v越大,越小,电子的速度与其加速电压(E伏特)有关即而则 埃即若被150伏的电压加速的电子,波长为 1 埃。若加速电压很高,
4、就应进行相对论修正。(参考教材 P3 表1-1)71.3电子透镜1)电子可以凭借轴对称的非均匀电场、磁场的力,使其会聚或发散,从而达到成象的目的。由静电场制成的透镜静电透镜由磁场制成的透镜磁透镜2)磁透镜和静电透镜相比有如下的优点目前,应用较多的是磁透镜,我们只是分析磁透镜是如何工作的。磁透镜静电透镜1.改变线圈中的电流强度可很方便的控制焦距和放大率;2.无击穿,供给磁透镜线圈的电压为60到100伏;3.象差小。1.需改变很高的加速电压才可改变焦距和放大率;2.静电透镜需数万伏电压,常会引起击穿;3.象差较大。83)磁透镜结构剖面图图1-294)磁透镜使电子会聚的原理OOz图1-3(a)电子在
5、磁透镜中的运动轨迹AC10OOAC图1-3(b)A点位置的B和v的分解情况11电子在磁场中要受到磁场作用力:即圆周运动切向运动向轴运动在C处有一离心作用力,可以抵消与A点相当的向轴作用力,但A、C中心处特别大的向轴力是抵不掉的,电子继续向轴偏转。出磁场后又是直线运动。12所有从O点出发的电子类似的轨迹运动,在v一定时,当轨迹与轴的角度很小时,电子会聚在O点(O)的象。平行于轴的电子运动轨迹如下图所示O象物Oba象物图1-3(c)平行光轴电子束经透镜成象的情况;ab为磁场作用区域。13我们有下面的结论:1)所有从同一点出发的不同方向的电子,经透镜作用后,交于象平面同一点,构成相应的象。2)从不同
6、物点出发的同方向同相位的电子,经透镜作用后,会聚于焦平面上一点,构成与试样相对应的散射花样。有极靴的透镜极靴使得磁场被聚焦在极靴上下的间隔h内,h可以小到1mm左右。在此小的区域内,场的径向分量是很大的。计算透镜焦距f的近似公式为电子显微镜可以提供放大了的象,电子波长又非常短,人们便自然地把电子显微镜视为弥补光学显微镜不足的有利工具14Oz图1-4带铁壳的带极靴的透镜O15有极靴B(z)没有极靴无铁壳z图1-4磁感应强度分布图161.4电子透镜的缺陷和理论分辨距离电子透镜也存在缺陷,使得实际分辨距离远小于理论分辨距离,对电镜分辨本领起作用的是球差、象散和色差。1)球差球差是由于电子透镜的中心区
7、域和边沿区域对电子的会聚能力不同而造成的。远轴的电子通过透镜是折射得比近轴电子要厉害的多,以致两者不交在一点上,结果在象平面成了一个满散圆斑,半径为还原到物平面,则为球差系数,最佳值是0.3mm。为孔径角,透镜分辨本领随增大而迅速变坏。17P象P透镜物P光轴图1-5(a)球差182)象差磁场不对称时,就出现象差。有的方向电子束的折射比别的方向强,如图1-5(b)所示,在A平面运行的电子束聚焦在Pa点,而在B平面运行的电子聚焦在Pb点,依次类推。这样,圆形物点的象就变成了椭圆形的漫散圆斑,其平均半径为还原到物平面为象散引起的最大焦距差;透镜磁场不对称,可能是由于极靴被污染,或极靴的机械不对称性,
8、或极靴材料各项磁导率差异引起。象散可由附加磁场的电磁消象散器来校正。19平面BPA透镜平面物P光轴PBfA平面A图1-5(b)象散203)色差电子的能量不同,从而波长不一造成的,电子透镜的焦距随着电子能量而改变,因此,能量不同的电子束将沿不同的轨迹运动。产生的漫散圆斑还原到物平面,其半径为是透镜的色差系数,大致等于其焦距,是电子能量的变化率。引起电子束能量变化的主要有两个原因:一是电子的加速电压不稳定;二是电子束照射到试样时,和试样相互作用,一部分电子发生非弹性散射,致使电子的能量发生变化。使用薄试样和小孔径光阑将散射角大的非弹性散射电子挡掉,将有助于减小色散。21能量为E的电子轨迹象1透镜物
9、P光轴图1-5(c)色差能量为E-E的电子轨迹象222在电子透镜中,球差对分辨本领的影响最为重要,因为没有一种简便的方法使其矫正,而其它象差,可以通过一些方法消除PAYATTENTION234)理论分辨距离光学显微镜的分辨本领基本上决定于象差和衍射,而象差基本上可以消除到忽略不计的程度,因此,分辨本领主要取决于衍射。电子透镜中,不能用大的孔径角,若这样做,球差和象差就会很大,但可通过减小孔径角的方法来减小象差,提高分辨本领,但不能过小。显微镜的分辨极限是电镜情况下,因此可见,光阑尺寸过小,会使分辨本领变坏,这就是说,光阑的最佳尺寸应该是球差和衍射两者所限定的值24相对应的最佳光阑直径式中的f为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电子 显微 分析
限制150内