人教版6.3实数第1课时课件演示教学.ppt
《人教版6.3实数第1课时课件演示教学.ppt》由会员分享,可在线阅读,更多相关《人教版6.3实数第1课时课件演示教学.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、6.3实数(shsh)(1)第一页,共27页。(1)无理数和实数(shsh)的概念;(2)实数(shsh)的分类;(3)实数(shsh)和数轴上的点一一对应。学习目标学习目标第二页,共27页。你认识你认识(rn shi)下列各数吗?下列各数吗?有理数是分类有理数是分类(fn li):有有理理数数整数整数分数分数正整数正整数零零负整数负整数正分数正分数负分数负分数有有理理数数正数正数负数负数正整数正整数零零负整数负整数正分数正分数负分数负分数第三页,共27页。引入引入把下列各数写成小数把下列各数写成小数(xiosh)的形式:的形式:整数和分数整数和分数(fnsh)统称为统称为有理数有理数有有限限
2、小小数数无无限限(wxin)循循环环小小数数有限小数和无限循环小数叫有理数有限小数和无限循环小数叫有理数第四页,共27页。使用使用(shyng)计算器,把下列有理数化成小数的形式:计算器,把下列有理数化成小数的形式:=3.0 =-0.6 =5.875 任何一个任何一个(y)有理数都能写成有限小数或无限循环小数的形式有理数都能写成有限小数或无限循环小数的形式反过来任何有限小数或无限循环小数也都是有理数;反过来任何有限小数或无限循环小数也都是有理数;35-47891111905930.810.120.5第五页,共27页。把下列把下列(xili)各数写成小数的形式:各数写成小数的形式:无限无限(wx
3、in)不循环小数不循环小数无限无限(wxin)不循环小数叫不循环小数叫无理数无理数第六页,共27页。无理数:无理数:无限无限(wxin)不循不循环小数环小数有理数:有理数:有限小数或无限有限小数或无限(wxin)循循环小数环小数实实 数数按定义按定义(dngy)分分类:类:分数分数整数整数女孩子女孩子男孩子妈妈开方开不尽的数开方开不尽的数有规律但不循环的数有规律但不循环的数含有含有 的数的数 第七页,共27页。负实数负实数(shsh)正实数正实数(shsh)数数实实正有理数正有理数负有理数负有理数按性质按性质(xngzh)分类:分类:0正无理数正无理数负无理数负无理数性格开朗的大孩子性格内向的
4、小孩子0正实数正实数负实数负实数第八页,共27页。实数实数(shsh)的分类的分类实实数数(shsh)有理数有理数无理数无理数整数整数(zhngsh)分数分数有限小数或有限小数或无限循环小数无限循环小数无限不循环小数无限不循环小数你还有其它分类方法吗?你还有其它分类方法吗?第九页,共27页。归纳归纳(gun)实数实数(shsh)的分类的分类实实数数(shsh)正实数正实数负实数负实数正有理数正有理数正无理数正无理数你知道怎样区分有理数和无理数吗?你知道怎样区分有理数和无理数吗?0负无理数负无理数负有理数负有理数(正负正负)第十页,共27页。把下列把下列(xili)各数分别填入相应的各数分别填入
5、相应的集合内:集合内:(相邻两个(相邻两个3之间的之间的7的个数逐次的个数逐次加加1)有理数集合有理数集合(jh)(jh)无理数集合无理数集合(jh)(jh)第十一页,共27页。把下列各数分别把下列各数分别(fnbi)填在相应的集合填在相应的集合中;中;有理数集合有理数集合(jh)无理数集合无理数集合0-80.63.1415926333622770.191191119每相邻两个每相邻两个9之间依次多一个之间依次多一个1第十二页,共27页。判断判断(pndun)下列说法是否正确;下列说法是否正确;(1)无限小数都是无理数)无限小数都是无理数.()(2)无理数都是无限小数)无理数都是无限小数.()
6、(3)带根号的数都是无理数)带根号的数都是无理数.()对对错错错错第十三页,共27页。引入引入在数轴在数轴(shzhu)上表示下列各数:上表示下列各数:-3 -2 -1 0 1 2 3 4有理数都可以用数轴有理数都可以用数轴(shzhu)上的点表示上的点表示第十四页,共27页。无限无限(wxin)(wxin)不循环的小数不循环的小数 -叫做无理叫做无理数数.(1)你能举出一些你能举出一些(yxi)无理数吗无理数吗?(2)每个有理数都可以用数轴上的点表示每个有理数都可以用数轴上的点表示(biosh),那,那么无理数是否也可以用数轴上的点来表示么无理数是否也可以用数轴上的点来表示(biosh)呢?
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 6.3 实数 课时 课件 演示 教学
限制150内