生物大分子的制备.ppt
《生物大分子的制备.ppt》由会员分享,可在线阅读,更多相关《生物大分子的制备.ppt(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、生物大分子的制备 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望2.1概述在自然科学,尤其是生命科学高度发展的今天,蛋白质、酶和核酸等生物大分子的结构与功能的研究是探求生命奥秘的中心课题,而生物大分子结构与功能的研究,必须首先解决生物大分子的制备问题,有能够达到足够纯度的生物大分子的制备工作为前题,结构与功能的研究就无从谈起。然而生物大分子的分离纯化与制备是一件十分细致而困难的工作。与化学产品的分离制备相比较,生物大分子的制备有以下主要特点:生物材料的组成极其复杂
2、,常常包含有数百种乃至几千种化合物。许多生物大分子在生物材料中的含量极微,分离纯化的步骤繁多,流程长。许多生物大分子一旦离开了生物体内的环境时就极易失活,因此分离过程中如何防止其失活,就是生物大分子提取制备最困难之处。生物大分子的制备几乎都是在溶液中进行的,温度、pH值、离子强度等各种参数对溶液中各种组成的综合影响,很难准确估计和判断。生物大分子的制备通常可按以下步骤进行:确定要制备的生物大分子的目的和要求,是进行科研、开发还是要发现新的物质。建立相应的可靠的分析测定方法,这是制备生物大分子的关键。通过文献调研和预备性实验,掌握生物大分子目的产物的物理化学性质。生物材料的破碎和预处理。分离纯化
3、方案的选择和探索,这是最困难的过程。生物大分子制备物的均一性(即纯度)的鉴定,要求达到一维电泳一条带,二维电泳一个点,或HPLC和毛细管电泳都是一个峰。产物的浓缩,干燥和保存。分析测定的方法主要有两类:即生物学和物理、化学的测定方法。生物学的测定法主要有:酶的各种测活方法、蛋白质含量的各种测定法、免疫化学方法、放射性同位素示踪法等;物理、化学方法主要有:比色法、气相色谱和液相色谱法、光谱法(紫外可见、红外和荧光等分光光度法)、电泳法、以及核磁共振等。实际操作中尽可能多用仪器分析方法,以使分析测定更加快速、简便。要了解的生物大分子的物理、化学性质主要有:在水和各种有机溶剂中的溶解性。在不同温度、
4、pH值和各种缓冲液中生物大分子的稳定性。固态时对温度、含水量和冻干时的稳定性。各种物理性质:如分子的大小、穿膜的能力、带电的情况、在电场中的行为、离心沉降的表现、在各种凝胶、树脂等填料中的分配系数。其他化学性质:如对各种蛋白酶、水解酶的稳定性和对各种化学试剂的稳定性。对其他生物分子的特殊亲和力。制备生物大分子的分离纯化方法多种多样,主要是利用它们之间特异性的差异,如分子的大小、形状、酸碱性、溶解性、溶解度、极性、电荷和与其他分子的亲和性等。各种方法的基本原理可以归纳为两个方面:利用混合物中几个组分分配系数的差异,把它们分配到两个或几个相中,如盐析、有机溶剂沉淀、层析和结晶等;将混合物置于某一物
5、相(大多数是液相)中,通过物理力场的作用,使各组分分配于不同的区域,从而达到分离的目的,如电泳、离心、超滤等。目前纯化蛋白质等生物大分子的关键技术是电泳、层析和高速与超速离心。2.2 生物大分子制备的前处理生物大分子制备的前处理2.2.1 生物材料的选择生物材料的选择 制备生物大分子,首先要选择适当的生物材料。材料的来源无非是动物、植物和微生物及其代谢产物。选择的材料应含量高、来源丰富、制备工艺简单、成本低,尽可能保持新鲜,尽快加工处理。动物组织要先除去结缔组织、脂肪等非活性部分,绞碎后在适当的溶剂中提取,如果所要求的成分在细胞内,则要先破碎细胞。植物要先去壳、除脂。微生物材料要及时将菌体与发
6、酵液分开。生物材料如暂不提取,应冰冻保存。动物材料则需深度冷冻保存。2.2.2 细胞的破碎细胞的破碎不同的生物体或同一生物体的不同部位的组织,其细胞破碎的难易不一,使用的方法也不相同,如动物脏器的细胞膜较脆弱,容易破碎,植物和微生物由于具有较坚固的纤维素、半纤维素组成的细胞壁,要采取专门的细胞破碎方法。(1)机械法:1)研磨:将剪碎的动物组织置于研钵或匀浆器中,加入少量石英砂研磨或匀浆。2)组织捣碎器:这是一种较剧烈的破碎细胞的方法,通常可先用家用食品加工机将组织打碎,然后再用10000r/min20000r/min的内刀式组织捣碎机(即高速分散器)将组织的细胞打碎。(2)物理法:1)反复冻融
7、法:将待破碎的细胞冷至15到20,然后放于室温(或40)迅速融化,如此反复冻融多次,由于细胞内形成冰粒使剩余胞液的盐浓度增高而引起细胞溶胀破碎。2)超声波处理法:此法是借助超声波的振动力破碎细胞壁和细胞器。破碎微生物细菌和酵母菌时,时间要长一些。3)压榨法:这是一种温和的、彻底破碎细胞的方法。在1000105Pa2000105Pa的高压下使细胞悬液通过一个小孔突然释放至常压,细胞将彻底破碎。4)冷热交替法:从细菌或病毒中提取蛋白质和核酸时可用此法。在90左右维持数分钟,立即放入冰浴中使之冷却,如此反复多次,绝大部分细胞可以被破碎。(3)化学与生物化学方法:1)自溶法:将新鲜的生物材料存放于一定
8、的pH和适当的温度下,细胞结构在自身所具有的各种水解酶(如蛋白酶和酯酶等)的作用下发生溶解,使细胞内含物释放出来。2)溶胀法:细胞膜为天然的半透膜,在低渗溶液和低浓度的稀盐溶液中,由于存在渗透压差,溶剂分子大量进入细胞,将细胞膜胀破释放出细胞内含物。3)酶解法:利用各种水解酶,如溶菌酶、纤维素酶、蜗牛酶和酯酶等,于37,pH8,处理15分钟,可以专一性地将细胞壁分解。4)有机溶剂处理法:利用氯仿、甲苯、丙酮等脂溶性溶剂或SDS(十二烷基硫酸钠)等表面活性剂处理细胞,可将细胞膜溶解,从而使细胞破裂,此法也可以与研磨法联合使用。2.2.3 生物大分子的提取生物大分子的提取“提取”是在分离纯化之前将
9、经过预处理或破碎的细胞置于溶剂中,使被分离的生物大分子充分地释放到溶剂中,并尽可能保持原来的天然状态不丢失生物活性的过程。影响提取的因素主要有:目的产物在提取的溶剂中溶解度的大小;由固相扩散到液相的难易;溶剂的pH值和提取时间等。通常:极性物质易溶于极性溶剂,非极性物质易溶于非极性溶剂;碱性物质易溶于酸性溶剂,酸性物质易溶于碱性溶剂;温度升高,溶解度加大;远离等电点的pH值,溶解度增加。提取时所选择的条件应有利于目的产物溶解度的增加和保持其生物活性。水溶液提取:蛋白质和酶的提取一般以水溶液为主。稀盐溶液和缓冲液对蛋白质的稳定性好,溶解度大,是提取蛋白质和酶最常用的溶剂。用水溶液提取生物大分子应
10、注意的几个主要影响因素是:1)盐浓度(即离子强度):离子强度对生物大分子的溶解度有极大的影响,有些物质,如DNA-蛋白复合物,在高离子强度下溶解度增加。绝大多数蛋白质和酶,在低离子强度的溶液中都有较大的溶解度,如在纯水中加入少量中性盐,蛋白质的溶解度比在纯水时大大增加,称为“盐溶”现象。盐溶现象的产生主要是少量离子的活动,减少了偶极分子之间极性基团的静电吸引力,增加了溶质和溶剂分子间相互作用力的结果。为了提高提取效率,有时需要降低或提高溶剂的极性。向水溶液中加入蔗糖或甘油可使其极性降低,增加离子强度(如加入KCl、NaCl、NH4Cl或(NH4)2SO4)可以增加溶液的极性。2)pH值:蛋白质
11、、酶与核酸的溶解度和稳定性与pH值有关。过酸、过碱均应尽量避免,一般控制在pH=68范围内,提取溶剂的pH应在蛋白质和酶的稳定范围内,通常选择偏离等电点的两侧。3)温度:为防止变性和降解,制备具有活性的蛋白质和酶,提取时一般在05的低温操作。4)防止蛋白酶或核酸酶的降解作用:加入抑制剂或调节提取液的pH、离子强度或极性等方法使相应的水解酶失去活性,防止它们对欲提纯的蛋白质、酶及核酸的降解作用。5)搅拌与氧化:搅拌能促使被提取物的溶解,一般采用温和搅拌为宜,速度太快容易产生大量泡沫,增大了与空气的接触面,会引起酶等物质的变性失活。因为一般蛋白质都含有相当数量的巯基,有些巯基常常是活性部位的必需基
12、团,若提取液中有氧化剂或与空气中的氧气接触过多都会使巯基氧化为分子内或分子间的二硫键,导致酶活性的丧失。在提取液中加入少量巯基乙醇或半胱氨酸以防止巯基氧化。有机溶剂提取一些和脂类结合比较牢固或分子中非极性侧链较多的蛋白质和酶难溶于水、稀盐、稀酸、或稀碱中,常用不同比例的有机溶剂提取。常用的有机溶剂有乙醇、丙酮、异丙醇、正丁酮等,这些溶剂可以与水互溶或部分互溶,同时具有亲水性和亲脂性。有些蛋白质和酶既溶于稀酸、稀碱,又能溶于含有一定比例的有机溶剂的水溶液中,在这种情况下,采用稀的有机溶液提取常常可以防止水解酶的破坏,并兼有除去杂质提高纯化效果的作用。例如,胰岛素。2.3 生物大分子的分离纯化生物
13、大分子的分离纯化 由于生物体的组成成分是如此复杂,数千种乃至上万种生物分子又处于同一体系中,因此不可能有一个适合于各类分子的固定的分离程序,但多数分离工作关键部分的基本手段是相同的。为了避免盲目性,节省实验探索时间,要认真参考和借鉴前人的经验,少走弯路。常用的分离纯化方法和技术有:沉淀法(包括:盐析、有机溶剂沉淀、选择性沉淀等)、离心、吸附层析、凝胶过滤层析、离子交换层析、亲和层析、快速制备型液相色谱以及等电聚焦制备电泳等。本章以介绍沉淀法为主。2.3.1 沉淀法沉淀法 沉淀是溶液中的溶质由液相变成固相析出的过程。沉淀法(即溶解度法)操作简便,成本低廉,不仅用于实验室中,也用于某些生产目的的制
14、备过程,是分离纯化生物大分子,特别是制备蛋白质和酶时最常用的方法。通过沉淀,将目的生物大分子转入固相沉淀或留在液相,而与杂质得到初步的分离。其基本原理是根据不同物质在溶剂中的溶解度不同而达到分离的目的,不同溶解度的产生是由于溶质分子之间及溶质与溶剂分子之间亲和力的差异而引起的,溶解度的大小与溶质和溶剂的化学性质及结构有关,溶剂组分的改变或加入某些沉淀剂以及改变溶液的pH值、离子强度和极性都会使溶质的溶解度产生明显的改变。在生物大分子制备中最常用的几种沉淀方法是:中性盐沉淀(盐析法):多用于各种蛋白质和酶的分离纯化。有机溶剂沉淀:多用于蛋白质和酶、多糖、核酸以及生物小分子的分离纯化。选择性沉淀(
15、热变性沉淀和酸碱变性沉淀):多用于除去某些不耐热的和在一定pH值下易变性的杂蛋白。等电点沉淀:用于氨基酸、蛋白质及其他两性物质的沉淀,但此法单独应用较少,多与其他方法结合使用。有机聚合物沉淀:是发展较快的一种新方法,主要使用PEG聚乙二醇(Polyethyeneglycol)作为沉淀剂。2.3.1.1 中性盐沉淀(盐析法)中性盐沉淀(盐析法)在溶液中加入中性盐使生物大分子沉淀析出的过程称为“盐析”。除了蛋白质和酶以外,多肽、多糖和核酸等都可以用盐析法进行沉淀分离。盐析法应用最广的还是在蛋白质领域,已有八十多年的历史,其突出的优点是:成本低,不需要特别昂贵的设备。操作简单、安全。对许多生物活性物
16、质具有稳定作用。中性盐沉淀蛋白质的基本原理蛋白质和酶均易溶于水,因为该分子的COOH、NH2和OH都是亲水基团,这些基团与极性水分子相互作用形成水化层,包围于蛋白质分子周围形成1nm100nm颗粒的亲水胶体,削弱了蛋白质分子之间的作用力,蛋白质分子表面极性基团越多,水化层越厚,蛋白质分子与溶剂分子之间的亲和力越大,因而溶解度也越大。亲水胶体在水中的稳定因素有两个:即电荷和水膜。因为中性盐的亲水性大于蛋白质和酶分子的亲水性,所以加入大量中性盐后,夺走了水分子,破坏了水膜,暴露出疏水区域,同时又中和了电荷,破坏了亲水胶体,蛋白质分子即形成沉淀。盐析示意图如下页“图4”所示。中性盐的选择常用的中性盐
17、中最重要的是(NH4)2SO4,因为它与其他常用盐类相比有十分突出的优点:1)溶解度大:尤其是在低温时仍有相当高的溶解度,这是其他盐类所不具备的。由于酶和各种蛋白质通常是在低温下稳定,因而盐析操作也要求在低温下(04)进行。由下表可以看到,硫铵在0时的溶解度,远远高于其它盐类:表2-1几种盐在不同温度下的溶解度(克/100毫升水)02080100(NH4)2SO470.675.495.3103Na2SO44.918.943.342.2NaH2PO41.67.893.81012)分离效果好:有的提取液加入适量硫酸铵盐析,一步就可以除去75的杂蛋白,纯度提高了四倍。3)不易引起变性,有稳定酶与蛋白
18、质结构的作用。有的酶或蛋白质用23mol/L浓度的(NH4)2SO4保存可达数年之久。4)价格便宜,废液不污染环境。盐析的操作方法最常用的是固体硫酸铵加入法。将其研成细粉,在搅拌下缓慢均匀少量多次地加入,接近计划饱和度时,加盐的速度更要慢一些,尽量避免局部硫酸铵浓度过大而造成不应有的蛋白质沉淀。盐析后要在冰浴中放置一段时间,待沉淀完全后再离心与过滤。在低浓度硫酸铵中盐析可采用离心分离,高浓度硫酸铵常用过滤方法。各种饱和度下需加固体硫酸铵的量可由附录中查出。盐析曲线的制作如果要分离一种新的蛋白质和酶,没有文献数据可以借鉴,则应先确定沉淀该物质的硫酸铵饱和度。具体操作方法如下(讲义p39):蛋白质
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物 大分子 制备
限制150内