2022年圆与方程知识点总结汇编 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年圆与方程知识点总结汇编 .pdf》由会员分享,可在线阅读,更多相关《2022年圆与方程知识点总结汇编 .pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习-好资料更多精品文档圆梦教育中心圆与方程知识点总结1.圆的标准方程:以点),(baC为圆心,r 为半径的圆的标准方程是222)()(rbyax.特例:圆心在坐标原点,半径为r 的圆的方程是:222ryx.2.点与圆的位置关系:(1).设点到圆心的距离为d,圆半径为r:a.点在圆内dr;b.点在圆上d=r;c.点在圆外dr (2).给定点),(00yxM及圆222)()(:rbyaxC.M 在圆 C 内22020)()(rbyax M 在圆 C 上22020)()rbyax(M 在圆 C 外22020)()(rbyax(3)涉及最值:圆外一点B,圆上一动点P,讨论PB的最值minPBBNBC
2、rmaxPBBMBCr圆内一点A,圆上一动点P,讨论PA的最值minPAANrACmaxPAAMrAC思考:过此A点作最短的弦?(此弦垂直AC)3.圆的一般方程:022FEyDxyx.(1)当0422FED时,方程表示一个圆,其中圆心2,2EDC,半径2422FEDr.(2)当0422FED时,方程表示一个点2,2ED.(3)当0422FED时,方程不表示任何图形.学习-好资料更多精品文档注:方程022FEyDxCyBxyAx表示圆的充要条件是:0B且0CA且0422AFED.4.直线与圆的位置关系:直线0CByAx与圆222)()(rbyax圆心到直线的距离22BACBbAad1)无交点直线
3、与圆相离rd;2)只有一个交点直线与圆相切rd;3)有两个交点直线与圆相交rd;弦长|AB|=222drdrd=rrd还可以利用直线方程与圆的方程联立方程组0022FEyDxyxCByAx求解,通过解的个数来判断:(1)当0时,直线与圆有2 个交点,直线与圆相交;(2)当0时,直线与圆只有1 个交点,直线与圆相切;(3)当0时,直线与圆没有交点,直线与圆相离;5.两圆的位置关系(1)设两圆2121211)()(:rbyaxC与圆2222222)()(:rbyaxC,圆心距221221)()(bbaad条公切线外离421rrd;条公切线外切321rrd;条公切线相交22121rrdrr;条公切线
4、内切121rrd;无公切线内含210rrd;外离外切相交内切(2)两圆公共弦所在直线方程文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3
5、V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C
6、3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B
7、8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6
8、O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K
9、8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O
10、8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8学习-好资料更多精品文档圆1C:221110 xyD xE yF,圆2C:222220 xyD xE yF,则1212120DDxEEyFF为两相交圆公共弦方程.补充说明:若1
11、C与2C相切,则表示其中一条公切线方程;若1C与2C相离,则表示连心线的中垂线方程.(3)圆系问题过 两 圆1C:221110 xyD xE yF和2C:222220 xyD xE yF交 点 的 圆 系 方 程 为22221112220 xyD xE yFxyD xE yF(1)补充:上述圆系不包括2C;2)当1时,表示过两圆交点的直线方程(公共弦)过直线0AxByC与圆220 xyDxEyF交点的圆系方程为220 xyDxEyFAxByC6.过一点作圆的切线的方程:(1)过圆外一点的切线:k 不存在,验证是否成立k 存在,设点斜式方程,用圆心到该直线距离=半径,即1)()(2110101R
12、xakybRxxkyy求解 k,得到切线方程【一定两解】例 1.经过点 P(1,2)点作圆(x+1)2+(y2)2=4 的切线,则切线方程为。(2)过圆上一点的切线方程:圆(xa)2+(yb)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0a)(xa)+(y0b)(yb)=r2文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 ZT5O8B8G4N8文档编码:CP6O3V5I4D8 HB7K8C3W5H10 Z
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年圆与方程知识点总结汇编 2022 方程 知识点 总结 汇编
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内