2022年指数函数对数函数专项练习 .pdf
《2022年指数函数对数函数专项练习 .pdf》由会员分享,可在线阅读,更多相关《2022年指数函数对数函数专项练习 .pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、指数函数、对数函数专项训练一、选择题1若函数y(a25a5)ax是指数函数,则有()Aa1 或a4 B a1Ca4 D a0,且a1解析:函数y(a25a5)ax是指数函数的条件为a25a51,a0,且a1,解得a4,故选 C.2.已知集合M=-1,1,N=x|212x+14,xZ,则 M N等于()A.-1,1B.-1C.0D.-1,0答案B 3.若 x(e-1,1),a=lnx,b=2lnx,c=ln3x,则()A.abc B.cab C.bac D.bca答案C:1lnx 0,取 lnx=-0.5即可。4下列函数中值域为正实数的是()Ay 5xBy(13)1xC y12x1D y1 2x
2、解析:1xR,y(13)x的值域是正实数,y(13)1x的值域是正实数答案:B 5给出下列结论:当a1,nN*,n为偶数);函数f(x)(x2)12(3x7)0的定义域是 x|x2且x73;若 2x16,3y127,则xy7;其中正确的是()A B C D解析:a0,a30,a1),满足f(1)19,则f(x)的单调递减区间是()A(,2 B 2,)C 2,)D (,2 解析:由f(1)19得a219,a13(a13舍去),即f(x)13|2 x4|.由于y|2x4|在(,2)上递减,在(2,)上递增,所以f(x)在(,2)上递增,在(2,)上递减故选B.8若点,a b在lgyx图象 上,1a
3、,则下列点也在此图象上的是()(A)1,ba(B)10,1ab(C)10,1ba(D))2,(2ba【讲析】选 D.由题 意2lglg22,lgaabab,即)2,(2ba也在函数xylg图象上.9.设函数 f(x)=12211log1x,x,x,x,则满足 f(x)2 的 x 的取值范围是()(A)-1,2 (B)0,2 (C)1,+)(D)0,+)【思路】可分1x和1x两种情况分别求解,再把结果并起来【讲析】若1x,则x-122,解得10 x;若1x,则2xlog-12,解得1x,综上,0 x.故选 D.10、如果1122loglog0 xy,那么()()1A yx()1B xy()1Cx
4、y()1Dyx【讲析】选 D.因为12logyx为(0,)上的减函数,所以1xy.11已知244log 3.6,log 3.2,log 3.6abc=则()A.abcBacbC.bac D.cab【思路】先与 1 比较,再看真数或底数,b 与 c 的底数相同,分别比较.文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R
5、5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编
6、码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C
7、10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4
8、R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1
9、L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6
10、C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6
11、V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1【讲析】选 B.因为24log 3.6 1log 3.6 1ac=,0=。12、函数yln(1 x)的图象大致为()解析:依题意由ylnx的图象关于y轴对称可得到yln(x)的图象,再将其图象向右平移1 个单位即可得到yln(1 x)的图象,变换过程如图答案:C 13已知函数()()()f xxaxb(其中ab)的图象如下面右图所示,则函数()xg xab的图象是()ABCD 解析 A;由()()()f xxa xb的图象知1,1 bao,所以函数()xg xab的图象是A 二、填空题14函数
12、ylog0.5(4x23x)的定义域是 _解析:由题知,log0.5(4x23x)0log0.51,所以4x23x0,4x23x 1.从而可得函数的定义域为14,0 34,1.答案:14,0 34,115当x 2,0 时,函数y3x+12 的值域是 _解析:x 2,0 时y3x 12 为增函数,3212y30 12,即53y1。答案:53,1 16函数ylog12(2x23x1)的递减区间为。解析:由2x23x10,得x1 或x12,易知u2x23x1x1或x12在(1,)上是增函数,而ylog12(2x23x 1)的底数121,且120,所以该函数的递减区间为(1,)17若函数f(x)log
13、ax(0a1)在区间 a,2a 上的最大值是最小值的3 倍,则a_.文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z
14、4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN
15、1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X
16、6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV
17、6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10
18、R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年指数函数对数函数专项练习 2022 指数函数 对数 函数 专项 练习
限制150内