2022年数列复习总结求通项求和 .pdf
《2022年数列复习总结求通项求和 .pdf》由会员分享,可在线阅读,更多相关《2022年数列复习总结求通项求和 .pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数列求通项方法总结11111.(1)()(1)2.:(2)(2)()3.(1)(2)()(3)()4(5):nnnnnnnnnnnnnSf naSnSaaSSnSf aaaf naaf n观察猜想,用数学归纳法证明得由求方法;类型:得递推关系由递推关系求通项公式法:运用等差、等比数列定义与通项公式;累加(逐差)法:递推关系为累乘(逐商)法:递推关系为倒数法构造新数列:递推关系为1111111121211111()2112()3()4lnlnnnnnnnnnnnnnnnnnnnnnnnnknnnnapaqaxp axaapcapac qqqq qqaqp aqapaqaaxay axaapapa
2、pkap类型:待定系数的形式类型:方法:两边同除以得类型方法:待定系数类型:待定系数的形式类型:取对数成等比一、由递推关系求通项:构造新数列1、11211,.2nnnaaaann已知求2、112,.31nnnnaaaan已知求3、113,23,nnnaaaa已知求4、113,.521nnnnaaaaa已知求5、11111,.1nnnnsasas已知求6、1121,nnnanaaan已知求7、1113,nnnnnaaaaa数列满足=1,求8、111,32,.nnnnaaaa已知求9、12215521,333nnnnnaaaaaaa数列满足求、10、112,21.nnnnnaaaaaa为正项数列,
3、求数列求和一、错位相减法要点:(1)适用:an等差,bn等比,求 an?bn的和;(2)注意:乘公比,错位对齐;(3)讨论:公比q 是否为 1.32:.132nnnxxxxS求和文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文
4、档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT
5、7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K
6、5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 H
7、Y3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5
8、J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 Z
9、H6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3
10、U2Y10.)Rx()2()1(.122,)(03.23211项和公式前,求数列令的通项公式;求数列且为等差数列北京nbxabaaaaaannnnnn二、裂项法要点:(1)常用的裂项方法;(2)注意:根据前后对称的特点,注意抵消后保留哪些项裂项相消法求和:把数列的通项拆成两项之差、正负相消剩下首尾若干项。常见拆项:111)1(1nnnn)121121(21)12)(12(1nnnn)211(21)2(1nnnn)2)(1(1)1(121)2)(1(1nnnnnnn)(1.1knn)12)(12(1.2nnnkn1.3)2)(1(1.4nnn1.111111(1),;(2),1 3 35 571
11、 23 234 345nLL求下面数列的前项和:.)12)(12()2(534312.2222nnnSn求和.,10,11.3nnnnan求项和为若前文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P
12、10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3
13、O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4
14、R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6
15、A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2
16、Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编
17、码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10.)2(;)1(*
18、),(9log),2(3,143111nnnnnnnnnnbaNnaSnbnaaaa求求项和的前数列中,、证明等比112211.,:0,1,.2(1)(2).nnnnnnnnnnaaabaaabaabb数列满足下列条件求证:是等比数列;求的通项公式112.1,21.(1)1;(2).nnnnnaaaaaa数列满足求证:数列是等比数列求数列的通项公式.)2(b)1(,21),2(44,4.3n11nnnnnnaabnaaaa求是等差数列;求证:数列令满足数列.42S)1(),3,2,1(2,1)04.(4111nnnnnaSnnSnnaa)是等比数列;(数列证明:全国文档编码:CT7R5I6K5
19、P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY3O4A5J4R5 ZH6A7Q3U2Y10文档编码:CT7R5I6K5P10 HY
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年数列复习总结求通项求和 2022 数列 复习 总结 求通项 求和
限制150内