2022年微专题构造函数法解选填压轴题 .pdf
《2022年微专题构造函数法解选填压轴题 .pdf》由会员分享,可在线阅读,更多相关《2022年微专题构造函数法解选填压轴题 .pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、微专题:构造函数法解选填压轴题高考中要取得高分,关键在于选准选好的解题方法,才能省时省力又有效果。近几年各地高考数学试卷中,许多方面尤其涉及函数题目,采用构造函数法解答是一个不错的选择。所谓构造函数法 是指通过一定方式,设计并构造一个与有待解答问题相关函数,并对其进行观察分析,借助函数本身性质如单调性或利用运算结果,解决原问题方法,简而言之就是构造函数解答问题。怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。几种导数的常见构造:1对于xgxf,构造xgxfxh若遇到0aaxf,则可构axxfxh2对于0 xgxf,构造xgxfxh3对于()()0fxf x,构造xfexhx
2、4对于()()fxf x或()()0fxf x,构造()()xf xh xe5对于0 xfxxf,构造xxfxh6对于0 xfxxf,构造xxfxh一、构造函数法比较大小例1已知函数()yf x的图象关于y 轴对称,且当(,0),()()0 xf xxfx成立,0.20.22(2)af,log 3(log 3)bf,33log 9(log 9)cf,则,a b c的大小关系是 ().A abc.B acb.C cba.D bac【解析】因为函数()yfx关于y轴对称,所以函数()yxf x为奇函数.因为()()()xfxf xxfx,所以当(,0)x时,()()()0 xf xf xxfx,函
3、数()yxf x单调递减,当(0,)x时,函数()yxfx单调递减.因为0.2122,0131og,3192og,所以0.23013219ogog,所以bac,选 D.变式:已知定义域为R的奇函数()fx的导函数为()fx,当0 x时,()()0f xfxx,若111(),2(2),ln(ln 2)222afbfcf,则下列关于,a b c的大小关系正确的是(D).A abc.B acb.C cba.D bac例 2已知()f x为R上的可导函数,且xR,均有()()f xfx,则有A2016(2016)(0)eff,2016(2016)(0)fefB2016(2016)(0)eff,2016
4、(2016)(0)fefC2016(2016)(0)eff,2016(2016)(0)fefD2016(2016)(0)eff,2016(2016)(0)fef【解析】构造函数()(),xf xg xe则2()()()()()()()xxxxfx eef xfxf xgxee,因为,xR均有()()f xfx,并且0 xe,所以()0gx,故函数()()xf xg xe在 R 上单调递减,所以(2016)(0)(2016)(0)gggg,即20162016(2016)(2016)(0)(0)ffffee,也就是20162016(2016)(0)(2016)(0)efffef,故选 D变式:已知
5、函数()f x为定义在R上的可导函数,且()()f xfx对于任意xR恒成立,e为自然对数的底数,则(C)2016.(1)(0)(2016)(0)A fe ffef、2016.(1)(0)(2016)(0)B fe ffef、2016.(1)(0)(2016)(0)C fe ffef、2016.(1)(0)(2016)(0)D fe ffef、例 3在数列na中,1()n 1,()nnanN则数列na中的最大项为()A2B33C55D不存在【解析】由已知12a,323a,4342a,545a易得12234,.aa aaa.猜想当2n时,na是递减数列又由11nnan知ln(1)ln1nnan,
6、令ln()xf xx,则221ln1ln()xxxxfxxx当3x时,ln1x,则1ln0 x,即()0fx()f x在3,内为单调递减函数,2n时,lnna是递减数列,即na是递减数列又12aa,数列na中的最大项为323a故选 B练习1 已知函数)(xfy对任意的)22(,x满足()cos()sin0fxxfxx,则()A)4(2)0(ff B.)3(2)0(ff C.)4()3(2ff D.)4()3(2ff提示:构造函数()()cosf xg xx,选 D文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10
7、G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J
8、6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9
9、Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U
10、10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L
11、8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1
12、N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y
13、1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4二、构造函数法解恒成立问题例 1若函数y=)(xf在R上可导且满足不等式()()0 xfxf x恒成立,对任意正数a、b,若ab,则必有()A()()af bbf aB()()bf aaf bC()()af abf bD()()bf baf a【解析】由已知()()0 xfxf x构造函数)()(xxfxF,则()Fx()()0 xfxf x,从而)(xF在R上为增函数。ab()()F aF
14、b即()()af abf b,故选 C。例 2已知)(xf是定义在(0,+)上的非负可导函数,且满足)()(xfxf x0,对任意正数a、b,若ab,则必有()A()()af bbf aB()()bf aaf bC()()af abf bD()()bf baf a【解析】xxfxF)()(,0)()()(2xxfxxfxF,故xxfxF)()(在(0,+)上是减函数,由ba,有bbfaaf)()(,即()()af bbf a。故选 A。变 式1.设()()f xg x、是R上 的 可 导 函 数,()()fxg x、分 别 为()()f xg x、的 导 函 数,且 满 足()()()()0f
15、x g xf x gx,则当axb时,有(C).()()()()A f x g bf b g x.()()()(B fx g afa g x.()()()()C f x g xf b g b.()()()(D fx g xfb g a变式 2.设函数bxaxgxfbaxgxf则当且上均可导在),()(,)(),(时,有(C)A)()(xgxfB)()(xgxfC)()()()(afxgagxf D)()()()(bfxgbgxf例 3设函数()f x在 R 上的导函数为()fx,且22()()f xxfxx,下面不等式恒成立的是()A0)(xfB0)(xfCxxf)(Dxxf)(【解析】由已知
16、,首先令0 x得0)(xf,排除 B,D令2()()g xx f x,则()2()()g xxf xxfx,当0 x时,有2()2()()()0gxf xxfxxgxx,所以函数()g x单调递增,所以当0 x时,()(0)0g xg,从而0)(xf文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q
17、5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U1
18、0G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8
19、J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N
20、9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1
21、U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4
22、L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4当0 x时,有
23、2()2()()()0gxf xxfxxgxx,所以函数()g x单调递减,所以当0 x时,()(0)0g xg,从而0)(xf综上0)(xf故选 A例 4 如果22(1)(1)1xxyy,那么下面的不等式恒成立的是()A0 xyB0 xyC0 xyD0 xy【解析】构造函数2()lg(1)()f xxxxR,易证()f x在 R 上是奇函数且单调递增22(1)(1)1xxyy2()()l g(1)fxfyxx+2lg(1)yy=22lg(1)(1)xxyy=lg1=0()()fxfy即:()()f xfy又()f x是增函数xy即0 xy。故选 B练习 1.已知yxyx)5.0(log)()
24、5.0(log31313131,则实数yx,的关系是(D )A.0yx B.0yx C.0yx D.0 xy【解析】构造函数133()(log 2)xf xx,()fx是增函数,又()()f xfy,0 xy,故选 D练习 2.已知函数)(xfy是R上的可导函数,当0 x时,有0)()(xxfxf,则函数xxxfxF1)()(的零点个数是(B )A.0 B.1 C.2 D.3【解析】由xxxfxF1)()(,得1()xf xx,构造函数g()()xxfx,则g()()()xf xx f x,当0 x时,有0)()(xxfxf,当0 x时,()()0 xfxf xx即当0 x时,g()()()0
25、 xf xx f x,此时函数g()x单调递增,此时g()g(0)0 x,当0 x时,g()()()0 xf xx f x,此时函数g()x单调递减,此时g()g(0)0 x,作出函数g()x和函数1yx的图象,(直线只代表单调性和取值范围),由图象可知函数xxxfxF1)()(的零点个数为1 个故选B三、构造函数法解不等式例 1.函数 f(x)的定义域为R,f(1)2,对任意x R,()2fx,则 f(x)2x4 的解集为()A(1,1)B(1,)C(,1)D(,)文档编码:CY1N9Q5K3D7 HQ1Y1U10G1I6 ZN7C4L8J6C4文档编码:CY1N9Q5K3D7 HQ1Y1U
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年微专题构造函数法解选填压轴题 2022 专题 构造 函数 法解选填 压轴
限制150内