《人教A版数学必修四教案:3.1.2两角和与差的正弦、余弦、正切公式(2).doc》由会员分享,可在线阅读,更多相关《人教A版数学必修四教案:3.1.2两角和与差的正弦、余弦、正切公式(2).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、备课大师:免费备课第一站!第2课时(一)导入新课 思路1.(复习导入)让学生回忆上节课所学的六个公式,并回忆公式的来龙去脉,然后让一个学生把公式默写在黑板上或打出幻灯.教师引导学生回顾比较各公式的结构特征,说出它们的区别和联系,以及公式的正用、逆用及变形用,以利于对公式的深刻理解.这节课我们将进一步探究两角和与差的正弦、余弦、正切公式的灵活应用. 思路2.(问题导入)教师可打出幻灯,出示一组练习题让学生先根据上节课所学的公式进行解答.1.化简下列各式(1)cos()cossin()sin;(2);(3)2.证明下列各式(1)(2)tan()tan(-)(1-tan2tan2)tan2-tan2
2、;(3)答案:1.(1)cos;(2)0;(3)1.2.证明略.教师根据学生的解答情况进行一一点拨,并对上节课所学的六个公式进行回顾复习,由此展开新课.(二)推进新课、新知探究、提出问题请同学们回忆这一段时间我们一起所学的和、差角公式.请同学们回顾两角和与差公式的区别与联系,可从推导体系中思考. 活动:待学生稍做回顾后,教师打出幻灯,出示和与差角公式,让学生进一步在直观上发现它们内在的区别与联系,理解公式的推导充分发挥了向量的工具作用,更要体会由特殊到一般的数学思想方法.教师引导学生观察,当、中有一个角为90时,公式就变成诱导公式,所以前面所学的诱导公式其实是两角和与差公式的特例.在应用公式时
3、,还要注意角的相对性,如=(+)-,等.让学生在整个的数学体系中学会数学知识,学会数学方法,更重要的是学会发现问题的方法,以及善于发现规律及其内在联系的良好习惯,提高数学素养.sin()sincoscossin();cos()coscossinsinC();tan()T().讨论结果:略.(三)应用示例思路1例1 利用和差角公式计算下列各式的值.(1)sin72cos42-cos72sin42;(2)cos20cos70-sin20sin70;(3) 活动:本例实际上是公式的逆用,主要用来熟悉公式,可由学生自己完成.对部分学生,教师点拨学生细心观察题中式子的形式有何特点,再对比公式右边,马上发
4、现(1)同公式S(-)的右边,(2)同公式C(+)右边形式一致,学生自然想到公式的逆用,从而化成特殊角的三角函数,并求得结果.再看(3)式与T(+)右边形式相近,但需要进行一定的变形.又因为tan45=1,原式化为,再逆用公式T(+)即可解得.解:(1)由公式S(-)得原式=sin(72-42)=sin30=.(2)由公式C(+)得原式=cos(20+70)=cos90=0.(3)由公式T(+)得原式=tan(45+15)=tan60=. 点评:本例体现了对公式的全面理解,要求学生能够从正、反两个角度使用公式.与正用相比,反用表现的是一种逆向思维,它不仅要求有一定的反向思维意识,对思维的灵活性
5、要求也高,而且对公式要有更全面深刻的理解.变式训练1.化简求值:(1)cos44sin14-sin44cos14;(2)sin14cos16+sin76cos74;(3)sin(54-x)cos(36+x)+cos(54-x)sin(36+x).解:(1)原式=sin(14-44)=sin(-30)=-sin30=.(2)原式=sin14cos16+cos14sin16=sin(14+16)=sin30=.(3)原式=sin(54-x)+(36+x)=sin90=1.2.计算解:原式=tan(45-75)=tan(-30)=-tan30=.例2 已知函数f(x)=sin(x+)+cos (x-
6、)的定义域为R,设0,2,若f(x)为偶函数,求的值. 活动:本例是一道各地常用的、基础性较强的综合性统考题,其难度较小,只需利用偶函数的定义,加上本节学到的两角和与差的三角公式展开即可,但不容易得到满分.教师可先让学生自己探究,独立完成,然后教师进行点评.解:f(x)为偶函数,f(-x)=f(x),即sin(-x+)+cos(-x-)=sin(x+)+cos(x-),即-sinxcos+cosxsin+cosxcos-sinxsin=sinxcos+cosxsin+cosxcos+sinxsin.sinxcos+sinxsin=0.sinx(sin+cos)=0对任意x都成立.sin(+)=
7、0,即sin(+)=0.+=k(kZ).=k-(kZ).又0,2),=或=. 点评:本例学生可能会根据偶函数的定义利用特殊值来求解.教师应提醒学生注意,如果将本例变为选择或填空,可利用特殊值快速解题,作为解答题利用特殊值是不严密的,以此训练学生逻辑思维能力.变式训练已知:,cos(-)=,sin(+)=,求cos2的值.解:,0-,+.又cos(-)=,sin(+)= ,sin(-)=,cos(+)=.cos2=cos(+)-(-)=cos(+)cos(-)+sin(+)sin(-)=+()=.例3 求证:cos+sin=2sin(+). 活动:本题虽小但其意义很大,从形式上就可看出来,左边是
8、两个函数,而右边是一个函数,教师引导学生给予足够的重视.对于此题的证明,学生首先想到的证法就是把等式右边利用公式S(+)展开,化简整理即可得到左边此为证法,这是很自然的,教师要给予鼓励.同时教师可以有目的的引导学生把等式左边转化为公式S(+)的右边的形式,然后逆用公式化简即可求得等式右边的式子,这种证明方法不仅仅是方法的变化,更重要的是把两个三角函数化为一个三角函数.证明:方法一:右边=2(sincos+cossin)=2(cos+sin)=cos+sin=左边.方法二:左边=2(cos+sin)=2(sincos+cossin)=2sin(+)=右边. 点评:本题给出了两种证法,方法一是正用
9、公式的典例,而方法二则是逆用公式证明的,此法也给了我们一种重要的转化方法,要求学生熟练掌握其精神实质.本例的方法二将左边的系数1与分别变为了与,即辅助角的正、余弦.关于形如asinx+bcosx(a,b不同时为零)的式子,引入辅助角变形为Asin(x+)的形式,其基本想法是“从右向左”用和角的正弦公式,把它化成Asin(x+)的形式.一般情况下,如果a=os,b=Asin,那么asinx+bcosx=A(sinxcos+cosxsin)=Asin(x+).由sin2+cos2=1,可得A2=a2+b2,A=,不妨取A=,于是得到cos=,sin=,从而得到tan=,因此asinx+bcosx=
10、sin(x+),通过引入辅助角,可以将asinx+bcosx这种形式的三角函数式化为一个角的一个三角函数的形式.化为这种形式可解决asinx+bcosx的许多问题,比如值域、最值、周期、单调区间等.教师应提醒学生注意,这种引入辅助角的变换思想很重要,即把两个三角函数化为一个三角函数,实质上是消元思想,这样就可以根据三角函数的图象与性质来研究它的性质.因此在历年高考试题中出现的频率非常高,是三角部分中高考的热点,再结合续内容的倍角公式,在解答高考物理试题时也常常被使用,应让学生领悟其实质并熟练的掌握它.变式训练 化简下列各式:(1)sinx+cosx;(2)cosx-6sinx.解:(1)原式=
11、2(sinx+cosx)=2(cossinx+sincosx)=2sin(x+).(2)原式=2 (cosx-sinx)=2(sincosx-cossinx)=2sin(-x).例4 (1)已知+=45,求(1+tan)(1+tan)的值;(2)已知sin(+)=,sin(-)=,求 活动:对于(1),教师可与学生一起观察条件,分析题意可知,+是特殊角,可以利用两角和的正切公式得tan,tan的关系式,从而发现所求式子的解题思路.在(2)中,我们欲求若利用已知条件直接求tan,tan的值是有一定的困难,但细心观察公式S(+)、S(-)发现,它们都含有sincos和cossin,而化切为弦正是,
12、由此找到解题思路.教学中尽可能的让学生自己探究解决,教师不要及早地给以提示或解答.解:(1)+=45,tan(+)=tan45=1.又tan(+)=tan+tan=tan(+)(1-tantan),即tan+tan=1-tantan.原式=1+tan+tan+tantan=1+(1-tantan)+tantan=2.(2)sin(+)=,sin(-)= ,sincos+cossin=, sincos-coscos=. +得sincos=,-得cossin=, 点评:本题都是公式的变形应用,像(1)中当出现+为特殊角时,就可以逆用两角和的正切公式变形tan+tan=tan(+)(1-tantan
13、),对于我们解题很有用处,而(2)中化切为弦的求法更是巧妙,应让学生熟练掌握其解法.变式训练1.求(1+tan1)(1+tan2)(1+tan3)(1+tan44)(1+tan45)的值.解:原式=(1+tan1)(1+tan44)(1+tan2)(1+tan43)(1+tan22)(1+tan23)(1+tan45)=2222=223.2.计算:tan15+tan30+tan15tan30.解:原式=tan45(1-tan15tan30)+tan15tan30=1.(四)作业已知一元二次方程ax2+bx+c=0(ac0)的两个根为tan、tan,求tan(+)的值.解:由韦达定理得:tan+tan=,tantan=,tan(+)=.(五)课堂小结1.先让学生回顾本节课的主要内容是什么?我们学习了哪些重要的解题方法?通过本节的学习,我们在运用和角与差角公式时,应注意什么?如何灵活运用公式解答有关的三角函数式的化简、求值、恒等证明等问题.2.教师画龙点睛:通过本节课的学习,要熟练掌握运用两角和与差的正弦、余弦、正切公式解决三角函数式的化简、求值、恒等证明等问题,灵活进行角的变换和公式的正用、逆用、变形用等.推导并理解公式asinx+bcosx=sin(x+),运用它来解决三角函数求值域、最值、周期、单调区间等问题.
限制150内