剖析高考数学中的恒成立问题.doc
《剖析高考数学中的恒成立问题.doc》由会员分享,可在线阅读,更多相关《剖析高考数学中的恒成立问题.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、剖析高考数学中的恒成立问题广东省湛江市坡头区第一中学 范友玉新课标下的高考越来越注重对学生的综合素质的考察,恒成立问题便是一个考察学生综合素质的很好途径,它主要涉及到一次函数、二次函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用。这三年的数学高考中频频出现恒成立问题,其形式逐渐多样化,但都与函数、导数知识密不可分。解决高考数学中的恒成立问题常用以下几种方法:函数性质法;主参换位法;分离参数法;数形结合法。下面我就以近三年高考试题为例加以剖析:一、函数性质法1、二次函数:.若二次函数(或)在R上恒成立,则有(或);.若二次
2、函数(或)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。图31oxy图11xy01xy0图2例1(08年江西卷理12)已知函数,若对于任一实数,与的值至少有一个为正数,则实数的取值范围是( )A(0,2) B(0,8) C(2,8) D(,0)分析:与的函数类型,直接受参数的影响,所以首先要对参数进行分类讨论,然后转换成不等式的恒成立的问题利用函数性质及图像解题。解析:当时,在上恒成立,而在上恒成立,显然不满足题意;(如图1)当时,在上递减且只在上恒成立,而是一个开口向下且恒过定点(0,1)的二次函数,显然不满足题意。当时,在上递增且在上恒成立,而是一个开口向上且恒过定点(0,1
3、)的二次函数,要使对任一实数,与的值至少有一个为正数则只需在上恒成立。(如图3)则有或解得或,综上可得即。 故选B。例2(09年江西卷文17)设函数w.w.w.k.s.5.u.c.o.m (1)对于任意实数,恒成立,求的最大值。(节选)解析:(1) , 对, 即 在上恒成立, , 得,即的最大值为。2、其它函数:恒成立(注:若的最小值不存在,则恒成立的下界大于0);恒成立(注:若的最大值不存在,则恒成立的上界小于0).例3(07年重庆卷理20)已知函数在处取得极值,其中、为常数.(1)试确定、的值; (2)讨论函数的单调区间;(3)若对任意,不等式恒成立,求的取值范围。分析: 恒成立,即 ,要
4、解决此题关键是求 ,。解:(1)(2)略(3)由(2)知,在处取得极小值,此极小值也是最小值.要使恒成立,只需.即,从而. 解得或. 的取值范围为.例4(08天津文21)设函数,其中()若对于任意的,不等式在上恒成立,求的取值范围(节选)分析:,即,要解决此题关键是求。解:()由条件可知,从而恒成立当时,;当时,因此函数在上的最大值是与两者中的较大者为使对任意,不等式在上恒成立,当且仅当,即,即在上恒成立即,所以,因此满足条件的的取值范围是例5(09年全国卷II文21)设函数,其中常数(II)若当时,恒成立,求的取值范围。(节选)w.w.w.k.s.5.u.c.o.m 分析:利用导数求函数的最
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 剖析 高考 数学 中的 成立 问题
限制150内