分式运算的几种技巧(专题复习)超好的整理资料(共8页).doc
《分式运算的几种技巧(专题复习)超好的整理资料(共8页).doc》由会员分享,可在线阅读,更多相关《分式运算的几种技巧(专题复习)超好的整理资料(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上分式运算的几种技巧分式运算的一般方法就是按分式运算法则和运算顺序进行运算。但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,下面列举几例介绍分式运算的几点技巧。一、 整体通分法例1 计算:【分析】本题是一个分式与整式的加减运算.如能把(-a-1)看作一个整体,并提取“-”后在通分会使运算更加简便.通常我们把整式看作分母是1的分式.【解】二、 先约分后通分法例2 计算分析:直接通分,极其繁琐,不过,各个分式并非最简分式,有化简的余地,显然,化简后再通分计算会方便许多。解:原式=+=+=三、 分组加减法例3计算+-分析:本题项数较多,分母不相同
2、.因此,在进行加减时,可考虑分组.分组的原则是使各组运算后的结果能出现分子为常数、相同或倍数关系,这样才能使运算简便。解:原式=(-)+(-)=+=四、 分离整数法例4 计算方法:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。解:原式= = = =。五、 逐项通分法例5 计算:分析:若一次通分,计算量太大,注意到相邻分母之间,依次通分构成平方差公式,采用分段分步法,则可使问题简单化。同类方法练习题:计算六、 裂项相消法例6 计算:.分析:本题的10个分式相加,无法通分,而式子的特点是:每个分式的分母都是两个连续整
3、数的积(若a是整数),联想到,这样可抵消一些项.解:原式= =七、 整体代入法例7已知+=5求的值解法1:+=5xy0,.所以=解法2:由+=5得,=5, x+y=5xy=练习:若=5,求的值八、 公式变形法例8已知a2-5a+1=0,计算a4+解:由已知条件可得a0,a+=5a4+=(a2+)2-2=(a+)2-22-2=(52-2)2-2=527练习:(1)已知x2+3x+1=0,求x2+的值九、 设中间参数法例9已知= = ,计算:解:设= = =k,则b+c=ak;a+c=bk;a+b=ck;把这3个等式相加得2(a+b+c)= (a+b+c)k若a+b+c=0,a+b= -c,则k=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分式 运算 技巧 专题 复习 整理 资料
限制150内