-概率论和数理统计解答.pdf
《-概率论和数理统计解答.pdf》由会员分享,可在线阅读,更多相关《-概率论和数理统计解答.pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一.填空题:(每题3 分,共 15 分)1.设 A、B 为两事件,P(A)=0.7,P(B)=0.6,AB,则()P A B=0.25 .2.若随机变量X 在0,1上服从均匀分布,Y=2X+1 的概率密度为:3 若随机变量(X,Y)的联合概率密度为(23),0,0(,)0,xycexyf x y其他,则C=6 。4.若随机变量X 服从参数为2指数分布X e(2),则2()E XX=1 .5.若随机变量X 的数学期望与方差分别为EX=1,DX=1,且114PX,根据切比雪夫不等式,应满足2 303。二.选择题:(每题3 分,共 15 分)1.设 A、B、C 为三事件,则ABBCAC表示 .DA、
2、B、C 至多发生一个2.设随机变量X 的密度函数为3014,()0,xxf x其他,则使 P(X a)=P(X a)成立,a为 .A 1423.若随机变量(X,Y)的概率密度为221/,1(,)0 xyf x y,其它,则X 与 Y 的随机变量 .C不独立同分布 .4设随机变量X 在a,b上服从均匀分布,且EX=3,DX=4/3,则参数a,b的值为.Ba=1,b=5 5.若12,nXXX是取自总体2(,)N的一个样本,已知,未知,则以下是统计量的是 .A 21()/niiXX1,13()20,Yyfy其它三.判断题:(每题2 分,共 10分)1.若 A 与 B 互斥,则P(AB)=0。(对)2
3、.若()F x是连续变量X 的分布函数,则()1F x dx。(错)3.若(X,Y)的 联 合 概 率 函 数 与 边 缘 概 率 函 数 之 间 存 在 关 系 式(,)()()iXiYjP x yPxP yj,1,2,ij、,则 X 与 Y 独立。(对)4.若随机变量X 与 Y 独立,则有()D XYDXDY。(错)5.若12,nXXX是取自总体X 的简单随机样本,则1X与2X同分布。(对)四|计算题:(每题10 分,共 60 分)1.按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有 90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(
4、1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设 A=被调查学生是努力学习的,则A=被调查学生是不努力学习的.由题意知P(A)=0.8,P(A)=0.2,又设B=被调查学生考试及格.由题意知P(B|A)=0.9,P(B|A)=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B AP ABP A BP BP A P B AP A P B A0.20.110.027020.80.90.20.137即考试及格的学生中不努力学习的学生仅占2.702%(2)()()()()()()()()()P A P B AP ABP
5、 A BP BP A P B AP A P B A0.80.140.30770.80.10.20.913即考试不及格的学生中努力学习的学生占30.77%.2.从 五 个 数1,2,3,4,5 中 任 取3 个 数123xxx,求:(1)随 机 变 量123maxXxxx,的概率分布;(2)随机变量X 的分布函数;(3)4P X。解:(1)X 的可能值是3,4,5.易知文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD
6、10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4
7、L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文
8、档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD
9、8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R
10、5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF
11、1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X
12、8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S72121352131352141351(3)0.1103(4)0.3,106(5)0.610C CP XCC CP XCC CP XC因此,所求的概率分布为X 3 4 5 P(xi)0.1 0.3 0.6(2)根据()()iixxF xP Xxp x得0,30.1,34()0.4,451,5xxF xxx(注意区间分段)(3)故所求的概率为4340.10.30.4P XP XP X3.设随机变量
13、(X,Y)的概率密度为f(x,y)=.,0,10,1其他xxy求条件概率密度fYX(y x),fXY(xy).题 3 图【解】()(,)dXfxf x yy1d2,01,0,.xxyxx其他文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4
14、L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文
15、档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD
16、8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R
17、5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF
18、1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X
19、8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD
20、10Y8T4L10S7111d1,10,()(,)d1d1,01,0,.yYyxyyfyf x yxxyy其他所以|1,|1,(,)(|)2()0,.Y XXyxf x yfy xxfx其他(注意区间分段)|1,1,1(,)1(|),1,()10,.X YYyxyf x yfx yyxfyy其他4.设随机变量X 的概率密度为1(),2xf xex求随机变量X 的数学期望EX 与方差 DX。解:由题设可得()102xEXx fx dxxedx(偶函数在对称区间上的数学期望均为0)222220022000001()2()()()022()22xxxxxxxxEXxf x dxxedxxe dxx
21、dexee dxxe dxx dee dx22()202DXEXEX5设总体X的概率密度为文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 解答
限制150内