《2022年因式分解导学案2 .pdf》由会员分享,可在线阅读,更多相关《2022年因式分解导学案2 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、14.3 因式分解(十字相乘法)导学案备课时间201(3)年(9)月(18)日 星期(三)学习时间201()年()月()日 星期()学习目标1.理解二次三项式的意义;2.理解十字相乘法的根据;3.能用十字相乘法分解二次三项式;4.难点是学习重点掌握十字相乘法学习难点首项系数不为 1 的二次三项式的十字相乘法学具使用多媒体课件、小黑板、彩粉笔、三角板等学习内容学习活动设计意图一、创设情境独立思考(课前20 分钟)1、阅读课本 P 121 页,思考下列问题:(1))()(2bxaxabxbax你能理解吗?(2)课本 P121页最下面 4 道题你能独立解答吗?2、独立思考后我还有以下疑惑:二、答疑解
2、惑我最棒(约8 分钟)甲:乙:丙:丁:同 伴 互 助答疑解惑14.3 因式分解(十字相乘法)导学案学习活动设计意图三、合作学习探索新知(约15 分钟)1、小组合作分析问题2、小组合作答疑解惑3、师生合作解决问题【1】二次三项式多项式cbxax2,称为字母 x 的二次三项式,其中2ax称为二次项,bx 为一次项,c 为常数项例如,322xx和652xx都是关于 x 的二次三项式在多项式2286yxyx中,如果把y 看作常数,就是关于 x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式在多项式37222abba中,把ab 看作一个整体,即3)(7)(22abab,就是关于 ab 的二次
3、三项式多项式12)(7)(2yxyx,把 xy 看作一个整体,就是关于 xy 的二次三项式十字相乘法是适用于二次三项式的因式分解的方法【2】十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(axb)(cxd)竖式乘法法则它的一般规律是:(1)对于二次项系数为1 的二次三项式qpxx2,如果能把常数项q分解成两个因数a,b的积,并且ab为一14.3 因式分解(十字相乘法)导学案学习活动设计意图项系数 p,那么它就可以运用公式)()(2bxaxabxbax分解因式这种方法的特征是“拆常数项,凑一次项”公式中的x文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3
4、B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R
5、5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M
6、5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9
7、P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV
8、9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK
9、4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4
10、O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同(2)对于二次项系数不是1 的二次三项式cbxax2(a,b,c都是整数且a0)来说,如果存在四个整数2121,ccaa,使aaa
11、21,ccc21,且bcaca1221,那 么cbxax2)()(2211211221221cxacxaccxcacaxaa它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1 的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定学习时要注意符号的规律 为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同14.3 因式分解(十字相乘法)导学案学习
12、活动设计意图用十字相乘用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母如:)45)(2(86522xxyxyx【3】因式分解一般要遵循的步骤多项式因式分解的一般步骤:先考虑能否提公因式,再文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P
13、3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9
14、R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4
15、M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O
16、9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:C
17、V9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 H
18、K4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI
19、4O9P3B6T3考虑能否运用公式或十字相乘法,最后考虑分组分解法 对于一个还能继续分解的多项式因式仍然用这一步骤反复进行以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”四、归纳总结巩固新知(约15 分钟)1、知识点的归纳总结:)()(2bxaxabxbax2、运用新知解决问题:(重点例习题的强化训练)例 1把下列各式分解因式:(1)1522xx;(2)2265yxyx点悟:(1)常数项 15 可分为 3(5),且 3(5)2 恰为一次项系数;(2)将y看作常数,转化为关于x的二次三项式,常数项26y可分为(2y)(3
20、y),而(2y)(3y)(5y)恰为一次项系数14.3 因式分解(十字相乘法)导学案学习活动设计意图解:(1))5)(3(1522xxxx;(2))3)(2(6522yxyxyxyx例 2把下列各式分解因式:(1)3522xx;(2)3832xx点 悟:我 们 要 把 多 项 式cbxax2分 解 成 形 如)(2211caxcax的 形 式,这 里aaa21,ccc21而bcaca1221解:(1))3)(12(3522xxxx;文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3
21、文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10
22、X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D
23、6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6
24、T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F
25、10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S
26、9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3
27、B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3(2))x)(x(xx3133832点拨:二次项系数不等于1 的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性例 3 把下列各式分解因式:(1)91024xx;(2))(2)(5)(723yxyxyx;(3)120)8(22)8(222aaaa点悟:(1)把2x看作一整体,从而转化为关于2x的二次三项式;14
28、.3 因式分解(十字相乘法)导学案学习活动设计意图(2)提取公因式(xy)后,原式可转化为关于(xy)的二次三项式;(3)以)8(2aa为整体,化为关于)8(2aa的二次三项式解:(1))9)(1(9102224xxxx(x1)(x1)(x3)(x3)(2))(2)(5)(723yxyxyx2)(5)(7)(2yxyxyx(xy)(xy)17(xy)2(xy)(xy1)(7 x7y2)(3)120)8(22)8(222aaaa)108)(128(22aaaa)108)(6)(2(2aaaa文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F1
29、0X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9
30、D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B
31、6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5
32、F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5
33、S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P
34、3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9
35、R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3点拨:要深刻理解换元的思想,这可以帮助我们及时、准确地发现多项式中究竟把哪一个看成整体,才能构成二次三项式,以顺利地进行分解同时要注意已分解的两个因式是否能继续分解,如能分解,要分解到不能再分解为止五、课堂小测(约5 分钟)六、独立作业我能行1、独立完成第十四章整式的乘法与因式分解小结与复习工具单2、独立作业七、课后反思:1、学习目标完成情况反思:14.3 因式分解(
36、十字相乘法)导学案学习活动设计意图2、掌握重点突破难点情况反思:3、错题记录及原因分析:自我评价课上1、本节课我对自己最满意的一件事是:2、本节课我对自己最不满意的一件事是:作业独立完成()求助后独立完成()未及时完成()未完成()五、课堂小测(约5 分钟)将多项式分解因式672xx;1232xx;文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6
37、B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T
38、3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F1
39、0X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9
40、D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B
41、6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5
42、F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5
43、S9D6B4 ZI4O9P3B6T3652xx;9542xx;823152xx;121124xx五、独立作业(约20 分钟)一、选择题1.如果)(2bxaxqpxx,那么 p 等于()AabBabCabD(ab)2.如果305)(22xxbxbax,则 b 为 ()A5 B6 C5 D 6 3.多项式axx32可分解为(x5)(xb),则 a,b 的值分别为()A10 和2 B10 和 2 C 10 和 2 D10 和2 4.不能用十字相乘法分解的是 ()A.22xxBxxx310322C242xxD22865yxyx5分解结果等于(xy4)(2 x2y5)的多项式是()A20)(13)(22
44、yxyxB20)(13)22(2yxyxC20)(13)(22yxyxD20)(9)(22yxyx二、填空题6.1032xx_7.652mm(m a)(m b)a_,b_8.3522xx(x3)(_)9.2x_22y(xy)(_)10.22_)(_(_)amna文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:
45、CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2
46、HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 Z
47、I4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编
48、码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D
49、2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3文档编码:CV9R5F10X9D2 HK4M5S9D6B4 ZI4O9P3B6T3
限制150内