《2022年导数的概念 .pdf》由会员分享,可在线阅读,更多相关《2022年导数的概念 .pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.1.2导数的概念课前预习学案预习目标:“导数的概念”了解 瞬时速度的定义,能够区分平均速度和瞬时速度,理解导数(瞬时变化率)的概念预习内容:问题 1 我们把物体在某一时刻的速度称为_。一般地,若物体的运动规律为)(tfs,则物体在时刻 t 的瞬时速度 v 就是物体在 t 到tt这段时间内,当 _时平均速度的极限,即tsvx0lim=_ 105.69.42ttth问题 2 函数 y=f(x)在 x=x0处的瞬时变化率是:0000()()limlimxxf xxf xfxx我 们 称 它 为 函 数()yf x在0 xx处 的 _,记 作0()fx或 _,即_ 提出疑惑同学们,通过你的自主学习
2、,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案学习目标:了解瞬时速度的定义,能够区分平均速度和瞬时速度,理解导数(瞬时变化率)的概念学习重点:导数概念的形成,导数内涵的理解学习难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵通过逼近的方法,引导学生观察来突破难点学习过程:一:问题提出问题:我们把物体在某一时刻的速度称为_。一般地,若物体的运动规律为)(tfs,则物体在时刻t 的瞬时速度v 就是物体在t 到tt这段时间内,当_时平均速度的极限,即tsvx0lim=_105.69.42ttth0t时,在2,2t这段时间内0t时,在t2,2这段时间内二:导数的概念函
3、数 y=f(x)在 x=x0处的瞬时变化率是:0000()()limlimxxf xxf xfxx我 们 称 它 为 函 数()yf x在0 xx处 的 _,记 作0()fx或 _,即_ 三:探究求导数的步骤:(即_变化率)四:精讲点拨课本例 1 五:有效训练求22xy在点 x=1 处的导数.反思总结:附注:导数即为函数y=f(x)在 x=x0处的瞬时变化率;与上一节的平均变化率不同定义的变化形式:xf=xxxfxfxyxx)()(lim)(lim0000;xf=00)()(lim)(lim00 xxxfxfxyxxxx;xf=xxfxxfx)()(lim000;0 xxx,当0 x时,0 x
4、x,所以0000()()()limxf xf xfxxx求函数xfy在0 xx处的导数步骤:“一差;二比;三极限”。当堂检测:);()()1(00 xfxxfy求增量;)()()2(00 xxfxxfxy算比值时)(在求0.)3(0 xxyyxx文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W
5、2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V
6、4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V
7、9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J
8、6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D
9、10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5
10、A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编
11、码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A101、已知函数)(xfy,下列说法错误的是()A、)()(00 xfxxfy叫函数增量B、xxfxxfxy)()(00叫函数在 xxx00,上的平均变化率C、)(xf在点0 x处的导数记为yD、)(xf在点0 x处的导数记为)(0 xf2、求函数xy在1x处的导数课后练习与提高1、若质点A 按规律22ts运动,则在3t秒的瞬时速度为()A、6 B、18 C、54 D、81 2、设函数)(xf可导,则xfxfx3)1()1(lim0=()A、)1(f B、)1(31f C、不存在 D、以上都不对3、函数xxy1在1x处的
12、导数是 _ 4、已知自由下落物体的运动方程是221gts,(s 的单位是m,t 的单位是s),求:(1)物体在0t到tt0这段时间内的平均速度;(2)物体在0t时的瞬时速度;(3)物体在0t=2s 到st1.21这段时间内的平均速度;(4)物体在st2时的瞬时速度。文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A1
13、0文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:
14、CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U
15、6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4
16、HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V
17、4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6
18、ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10
19、K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10h t o1.1.2 导数的概念教学目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道 瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数.教学重点:瞬时速度、瞬时变化率的概念、导数的概念.教学难点:导数的概念.教学过程:一、创设情景(一)平均变化率(二)探究探究:计算运动员在49650t这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数105.69.4)(2ttt
20、h的图像,结合图形可知,)0()4965(hh,所以)/(004965)0()4965(mshhv虽然运动员在49650t这段时间里的平均速度为)/(0ms,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.二、新课讲授1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度.运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t时的瞬时速度是多少?考察2t附近的情况:文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5
21、A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编
22、码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W
23、2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V
24、4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V
25、9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J
26、6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D
27、10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10思考 当t趋近于0时,平均速度v有什么样的变化趋势?结论:当t趋近于0时,即无论t从小于2的一边,还是从大于2的一边趋近于2时,平均速度v都趋近于一个确定的值13.1.从物理的角度看,时间t间隔无限变小时,平均速度v就无限趋近于史的瞬时速度.因此,运动员在2t时的瞬时速度是13.1/m s为了表述方便,我们用0(2)(2)lim
28、13.1ththt表示“当2t,t趋近于0时,平均速度v趋近于定值13.1”小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值.2.导数的概念从函数)(xfy在0 xx处的瞬时变化率是:0000()()limlimxxfxxf xfxx我们称它为函数()yfx在0 xx出的 导数,记作0()fx或0|xxy即0000()()()limxf xxf xfxx说明:(1)导数即为函数)(xfy在0 xx处的瞬时变化率;(2)0 xxx,当0 x时,0 xx,所以0000()()()limxf xfxfxxx.三、典例分析例 1(1)求函数23
29、xy在1x处的导数.(2)求函数xxxf2)(在1x附近的平均变化率,并求出该点处的导数.分析:先求)()(00 xfxxfyf,再求xy,最后求xyx0lim.解:(1)法一定义法(略)法二2222111133 13(1)|limlimlim3(1)611xxxxxxyxxx(2)xxxxxy32)1()1(2200(1)(1)2(1)limlim(3)3xxyxxfxxx例 2 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh时,原油的温度(单位:Co)为2()715(08)fxxxx,计算第2h时和第6h时,原油温度的瞬时变化率,并说明它们的意义.文档编码
30、:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2
31、U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4
32、 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9
33、V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6
34、 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D1
35、0K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A
36、10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10解:在第2h时和第6h时,原油温度的瞬时变化率就是(2)f和(6)f根据导数定义0(2)()fxf xfxx22(2)7(2)15(27215)3xxxx所以00(2)liml
37、im(3)3xxffxx同理可得:(6)5f在第2h时和第6h时,原油温度的瞬时变化率分别为3和5,说明在第2h附近,原油温度大约以3/C ho的速率下降在第6h附近,原油温度大约以5/C ho的速率上升.注:一般地,0()fx反映了原油温度在时刻0 x附近的变化情况.四、课堂练习1.质点运动规律为32ts,求质点在3t的瞬时速度为.2.求曲线3)(xxfy在1x时的导数.3.例 2 中,计算第3h时和第5h时,原油温度的瞬时变化率,并说明它们的意义.五、回顾总结1.瞬时速度、瞬时变化率的概念.2.导数的概念.六、布置作业课本第 10 页:2,4 文档编码:CW2W2U6G2V4 HW4V9V
38、4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6
39、ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10
40、K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A1
41、0文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:
42、CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U
43、6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10文档编码:CW2W2U6G2V4 HW4V9V4A7J6 ZM6D10K2H5A10
限制150内