《结构数值分析有限单元法基础.ppt》由会员分享,可在线阅读,更多相关《结构数值分析有限单元法基础.ppt(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、结构数值分析有限单元法基础 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望欢迎学习有限单元法欢迎学习有限单元法第一章第一章 有限单元法的总体思路、方法概说有限单元法的总体思路、方法概说 1.1 引言引言 0 0、为什么要学有限单元法、为什么要学有限单元法1m2mP/2P/2tA求点求点A的位移的位移?结构力学方法:结构力学方法:P弹性力学方法:弹性力学方法:当弹性板计算当弹性板计算结构不能简化结构不能简化(1 1)是一种以电子计算机为计算工具的是一种以电子计算机为
2、计算工具的结构分析结构分析数值方法数值方法。(2 2)是以是以剖分插剖分插值和能量原理值和能量原理为基础的一种结构为基础的一种结构计算方法。计算方法。1 1、什么是有限单元法、什么是有限单元法 剖分插剖分插值值把结构剖分(离散)为有限个单元把结构剖分(离散)为有限个单元(小局部),利用(小局部),利用“插值函数插值函数”研究单元的平衡和协调;研究单元的平衡和协调;再把这有限个离散单元集合(还原)成结构,保证被还原再把这有限个离散单元集合(还原)成结构,保证被还原的结构满足平衡和变形协调条件。的结构满足平衡和变形协调条件。12345678910P5764 56345678 图图1-1 弹性悬臂板
3、弹性悬臂板剖分与集合剖分与集合单元、节点需编号单元、节点需编号 能量原理能量原理研究单元平衡和结构整体平衡时,都用研究单元平衡和结构整体平衡时,都用能量原理描述。能量原理描述。广泛使用广泛使用“矩阵矩阵”这一数学工具。这一数学工具。可以说有限元法的可以说有限元法的 基本思路是:基本思路是:结构结构剖分和单元集合剖分和单元集合。有关平衡的表述采用:有关平衡的表述采用:能量原理能量原理。主要优点:主要优点:计算规格化、数值化、计算规格化、数值化、适合计算机编程适合计算机编程。有限元法避免了经典弹性力学有限元法避免了经典弹性力学连续解连续解的困难,使大型、的困难,使大型、复杂结构的计算容易地在计算机
4、上完成。复杂结构的计算容易地在计算机上完成。2 2、有限元法的分析思路有限元法的分析思路 (1)用用点点、线线或或面面把把结结构构剖剖分分为为一一系系列列离离散散单单元元。进进行行单元分析,使每个单元都满足平衡条件和变形连续条件:单元分析,使每个单元都满足平衡条件和变形连续条件:l/2l/2P123 1、F1 2、F2 3、F3 4、F4l/212l/223 1、F1 2、F2 3、F3 4、F4图图1-2 两端固定梁剖分两端固定梁剖分单元的单元的节点上节点上有位移有位移 和力和力F(2)再再把把所所有有被被离离散散的的单单元元集集合合起起来来。进进行行系系统统(结结构构整整体体)分分析析,保
5、保证证系系统统在在单单元元与与单单元元间间连连接接点点处处的的平平衡衡条条件及变形协调条件得到满足。件及变形协调条件得到满足。最终实现对结构的完整分析计算最终实现对结构的完整分析计算。1、F1 2、F2 3、F3 4、F4l/212l/223 1、F1 2、F2 3、F3 4、F4l/2l/2P123图图1-33、节点和节点自由度数概念、节点和节点自由度数概念单元与单元间、单元和支座间的连接点称单元与单元间、单元和支座间的连接点称节点节点。节点自由度数节点自由度数指:计算时对一个节点应考虑的独立位移数。指:计算时对一个节点应考虑的独立位移数。12345678912452356457856891
6、23456789 1、F1 2、F2xy节点位移节点位移 节点力节点力F图图1-4 平面应力板平面应力板 一一个个单单元元的的每每个个节节点点上上都都有有用用来来描描述述其其变变形形的的广广义义位位移移和和相相应应的的广广义义力力。广广义义一一语语意意味味着着所所论论位位移移既既可可以以是是线线位位移移,也也可可以以是是角角位位移移。力力除除了了代代表表力力以以外外,还还可可以以代代表表力矩。力矩。4 4、单元节点位移和单元节点力、单元节点位移和单元节点力F1F2F3F412l/212l/2 1 3 2 4上上述述单单元元的的节节点点位位移移和和节节点点力力是是对对给给定定的的坐坐标标系系来来
7、说说的的,这里,暂假定各单元具有统一的坐标系这里,暂假定各单元具有统一的坐标系XY。XY图图1-5 把单元上所有节点的位移(或力)依次集合起来排列把单元上所有节点的位移(或力)依次集合起来排列成一个列向量成一个列向量(或(或F),称),称(或(或F)为单元节)为单元节点位移(或单元节点力),可简称为点位移(或单元节点力),可简称为单元位移(或单元力)单元位移(或单元力)。单元上节点位移总数称单元上节点位移总数称单元的自由度数单元的自由度数,等于单元节点,等于单元节点数乘节点自由度数。数乘节点自由度数。研究单元时研究单元时 F F 是外力,但就整个结构而论,它是内力是外力,但就整个结构而论,它是
8、内力。1 2 3 4l/212F1F2F3F4l/212xy F1 F2 F3 F4l/212xyl/223 F1 F2 F3 F4研究单元时研究单元时F是外力,是外力,就整个结构而论它是内力。就整个结构而论它是内力。l/2l/2P123图图1-6 5 5、简要归纳、简要归纳(1)剖分结构时应对单元、节点分别用连续正整数编号。剖分结构时应对单元、节点分别用连续正整数编号。123456789(2)节点独立位移数是节点自由度数。)节点独立位移数是节点自由度数。平面桁架节点:平面桁架节点:2(ux、uy)xyuxuy空间桁架节点:空间桁架节点:3(ux、uy、uz)uy zxy平面梁节点:平面梁节点
9、:2(uy、z)空间梁节点:空间梁节点:6(ux、uy、uz、x、y、z)zxyuxuyuz平面应力板节点:平面应力板节点:2(ux、uy)xyuxuy节点的独立位移数与结构的变形性质有关。节点的独立位移数与结构的变形性质有关。(3)从结构中取出的任何单元,应有单元号,单元上的节从结构中取出的任何单元,应有单元号,单元上的节点应有节点号。这些编号应和结构剖分时的编号对应。点应有节点号。这些编号应和结构剖分时的编号对应。(十分重要,定义有关数据地址十分重要,定义有关数据地址)52623杆件单元杆件单元板单元板单元图图1-7研究一般单元特性时,可用字母表示单元、节点编号。研究一般单元特性时,可用字
10、母表示单元、节点编号。图图1-8ij(e)ijm(e)(4)每个单元都有)每个单元都有单元位移单元位移 、单元力、单元力F。它们是。它们是把单元上所有节点的位移(或力)依次集合起来排成的一把单元上所有节点的位移(或力)依次集合起来排成的一个列向量个列向量 (或(或F)。)。ijmuiujumvivjvmijmFxiFyiFxjFxmFyjFymxy图图1-9 平面应变板单元平面应变板单元(5)确定单元位移、单元力)确定单元位移、单元力应有坐标概念应有坐标概念。如果是在特定。如果是在特定的单元坐标系中得出的单元位移、单元力的单元坐标系中得出的单元位移、单元力 称单元坐标称单元坐标单元位移、单元坐
11、标单元力。单元位移、单元坐标单元力。(6)对单元:)对单元:F 是外力是外力;对结构:对结构:F是内力是内力。1.2 单元分析单元分析单元刚度矩阵概念单元刚度矩阵概念 单元分析的主要工作是单元分析的主要工作是:通过研究单元力和单元位移:通过研究单元力和单元位移之间关系,建立单元刚度矩阵。之间关系,建立单元刚度矩阵。对任意单元而言,描述单元力和单元位移之间关系的对任意单元而言,描述单元力和单元位移之间关系的一个方阵,称单元刚度矩阵。以图一个方阵,称单元刚度矩阵。以图1-10示出的平面梁单元示出的平面梁单元为例。坐标系为例。坐标系XY如图所示。如图所示。图图1-10XY 1 2 3 4单元位移单元
12、位移(e)ijXYF1F2F3F4单元力单元力(e)ij(1-1)描述单元力和单元位移之间关系的矩阵式一般可写为描述单元力和单元位移之间关系的矩阵式一般可写为:其中,其中,kij(i=1、4,j=1、4)称刚度系数,)称刚度系数,矩阵矩阵:称为第(称为第(e)号单元的单元坐标单元刚度矩阵,可简称为)号单元的单元坐标单元刚度矩阵,可简称为单元刚度矩阵,简写为单元刚度矩阵,简写为k。即。即(1-2)引入单元位移、单元力符号引入单元位移、单元力符号:、公式(公式(1-1)被缩写为:)被缩写为:(1-3)从式(从式(1-3)和()和(1-1)看出:)看出:(1)单元刚度矩阵表明了单元力和单元位移之间关
13、系。由)单元刚度矩阵表明了单元力和单元位移之间关系。由于后面推演这套关系中的刚度系数于后面推演这套关系中的刚度系数kij时,保证了单元内部时,保证了单元内部的平衡和协调。所以,引用单元刚度矩阵就意味着单元的的平衡和协调。所以,引用单元刚度矩阵就意味着单元的平衡和协调条件已经得到满足。平衡和协调条件已经得到满足。(2)单元刚度矩阵中的任意元素)单元刚度矩阵中的任意元素kij是单位位移是单位位移 j=1、其、其它位移为零时的它位移为零时的Fi。单元分析的主要任务就是确单元分析的主要任务就是确定单元刚度矩阵定单元刚度矩阵kk。1.3 系统分析系统分析 1、系统分析力学概念、系统分析力学概念 系统分析
14、就是将离散的单元集合起来还原成结构,对系统分析就是将离散的单元集合起来还原成结构,对结构进行整体分析。结构进行整体分析。这一过程中,要保证结构在这一过程中,要保证结构在节点处是平衡的节点处是平衡的;同时相;同时相交于同一节点的所有单元在交于同一节点的所有单元在节点处的位移是协调的节点处的位移是协调的。以图以图1.11所示连续梁为例所示连续梁为例:12345P1P2P3XY图图1-11在在3号节点处号节点处12345P1P2P3图图1-123P2F4 +F2 =0F3 +F1 +P2=0 平衡条件平衡条件 3 =1 =结构上结构上3点挠度点挠度 4 =2 =结构上结构上3点转角点转角 协调条件协
15、调条件 1、F1 3、F3 4、F4 2、F223 1、F1 3、F3 4、F4 2、F234F4 F3F2 F1 2、系统分析内容、系统分析内容 (1)确定受约束自由度的位置、数量;)确定受约束自由度的位置、数量;(2)确定结构自由度总数;)确定结构自由度总数;(3)组集结构刚度矩阵;)组集结构刚度矩阵;(4)求解系统节点综合方程获得节点位移解答。)求解系统节点综合方程获得节点位移解答。3、确认受约束自由度的位置、数量、确认受约束自由度的位置、数量 约束指结构中那些使节点位移为零的刚性约束,如刚约束指结构中那些使节点位移为零的刚性约束,如刚性支座约束等。约束一定发生在节点上(不考虑非节点约性
16、支座约束等。约束一定发生在节点上(不考虑非节点约束),但不一定约束节点的全部位移。束),但不一定约束节点的全部位移。图图1-1图图1-13 简支梁简支梁4123xyP1P2简支梁节点自由度为简支梁节点自由度为2,1、4点的竖向位移受点的竖向位移受约束,但角位移不受约约束,但角位移不受约束。束。12悬臂平面应力板剖分为悬臂平面应力板剖分为4个单元后,只在节点个单元后,只在节点1、2有约束。有约束。受约束位移的位置:节点受约束位移的位置:节点1、4的竖向位移受约束的自由度的竖向位移受约束的自由度数(数(nr):):nr=2 4、计算结构自由度总数、计算结构自由度总数(1)不计入约束时)不计入约束时
17、结构自由度总数结构自由度总数(nf)等于节点总数等于节点总数(nj)乘节点自由度数乘节点自由度数(ndf)。nf=njndf (1-4)(2)计入约束后)计入约束后 结构自由度总数(结构自由度总数(N)等于不计约束时的结构自由度总数()等于不计约束时的结构自由度总数(nf)减受约束的自由度数()减受约束的自由度数(nr)。)。N=nf-nr (1-5)xy例如例如:图示平面框架,有图示平面框架,有4个节点。个节点。每个节点有每个节点有3个自由度个自由度(线位移线位移2、角位移、角位移1)。节点总数节点总数 nj=4 节点自由度数节点自由度数 ndf=3 受约束自由度数受约束自由度数 nr=6
18、结构自由度总数结构自由度总数 不计约束:不计约束:nf=43=12 计入约束:计入约束:N=12-6=61234图图1-14 5、组集结构刚度矩阵、组集结构刚度矩阵K 建立起系统节点力建立起系统节点力P与节点位移与节点位移之间的关系之间的关系满足结构整体平衡和协调条件的综合方程。满足结构整体平衡和协调条件的综合方程。图图1-15示出的受集中力作用的两端固定梁示出的受集中力作用的两端固定梁系统的节点位移如图系统的节点位移如图1-16所示。所示。图图1-15 1 21234xy图图1-161234P1P3P2P4 4 3 系统节点力与节点位移关系为:系统节点力与节点位移关系为:(1-6)或缩写为或
19、缩写为:P=K (1-7)其中其中 K结构刚度矩阵结构刚度矩阵实实际际运运算算中中,结结构构刚刚度度矩矩阵阵是是由由单单元元刚刚度度矩矩阵阵集集合合而而成成。集集合合结结构构刚刚度度矩矩阵阵的的过过程程就就是是使使系系统统的的平平衡衡条条件件和和变变形形协协调条件得到满足的过程调条件得到满足的过程。第。第3章将对此进行深入讨论。章将对此进行深入讨论。6、关于等价节点荷载、关于等价节点荷载 从图从图1-15、16和式和式1-7看出,综合方程中的荷载都是节看出,综合方程中的荷载都是节点荷载。然而,工程中的荷载不只是节点荷载,还有线荷点荷载。然而,工程中的荷载不只是节点荷载,还有线荷载、面荷载。载、
20、面荷载。有限元计算中,必须把线荷载、面荷载化为有限元计算中,必须把线荷载、面荷载化为与之等价的节点荷载与之等价的节点荷载。7、求解结构整体平衡方程、求解结构整体平衡方程 从方程(从方程(1-7)可解出节点位移)可解出节点位移。由由此此可可见见,用用有有限限单单元元法法计计算算结结构构的的力力学学状状态态是是以以节节点位移点位移为未知量的。为未知量的。P=K (1-7)1.4 计算结构内力和应力计算结构内力和应力 返回每个单元逐一分析返回每个单元逐一分析 1、根根据据变变形形协协调调条条件件,从从中中找找出出相相应应的的单单元元位位移移,并把它换算成单元坐标的单元位移并把它换算成单元坐标的单元位
21、移。2、应用公式、应用公式 F=k 计算计算F。3、结构内力、结构内力=F+等价分布荷载过程的附加内力。等价分布荷载过程的附加内力。总总 结结1.1 引言引言 1.2 单元分析单元分析单元刚度矩阵概念单元刚度矩阵概念1、什么是有限单元法、什么是有限单元法 2、有限元法的分析思路有限元法的分析思路3、节点和节点自由度数概念、节点和节点自由度数概念4 4、单元节点位移和单元节点力、单元节点位移和单元节点力1.3 系统分析系统分析 1、系统分析力学概念、系统分析力学概念 2、系统分析内容、系统分析内容3、确认受约束自由度的位置、数量、确认受约束自由度的位置、数量 4、计算结构自由度总数、计算结构自由度总数 5、组集结构刚度矩阵、组集结构刚度矩阵K 6、关于等价节点荷载、关于等价节点荷载 7、求解结构整体平衡方程、求解结构整体平衡方程 1.4 计算结构内力和应力计算结构内力和应力1.5 有限元思路框图有限元思路框图解综合方程解综合方程K=P求结构节点位移求结构节点位移计算结构内力和应力计算结构内力和应力系统分析系统分析(把单元刚度矩阵集合成结构刚度矩阵把单元刚度矩阵集合成结构刚度矩阵K形成等价节点荷载形成等价节点荷载P)离散(剖分)结构离散(剖分)结构为若干单元为若干单元单元分析单元分析(建立单元刚度矩阵建立单元刚度矩阵ke形成单元等价节点力形成单元等价节点力)下接第下接第2 2章章
限制150内