传染病动力学研究资料.ppt
《传染病动力学研究资料.ppt》由会员分享,可在线阅读,更多相关《传染病动力学研究资料.ppt(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、传染病动力学研究21.引 言医学的发展已经能够有效地预防和控制许多传染病,天花在世界范围内被消灭,鼠疫、霍乱等传染病得到控制。但是仍然有一些传染病暴发或流行,危害人们的健康和生命。有些传染病传染很快,导致很高的致残率,危害极大,因而对传染病在人群中传染过程的研究具有重要的现实意义。3456勾清明(2007)4通过引入比例变量建立了一个具有阶段结构和标准发生率的SIS流行病模型,得到了模型的阚值参数R。证明了模型的全局性态完全由 确定。在此基础上,建立了模型的阈值参数 和 证明了种群总数与染病者总数的增减分别由参数 和 控制。成小伟,胡志兴(2008)5研究了具有常数移民以及具有急性和慢性两个阶
2、段的SIS传染病模型。针对急慢性两种情况分别得到了相应模型的平衡点,证明了无病平衡点的全局渐近稳定性,运用一种几何方法给出了地方病平衡点的存在性和全局渐近稳定性的充分条件,最后进行数值模拟以验证所得结论。Zhang T L(2009)6、7分别讨论了具有延迟阶段结构的SIS模型以及具有非线性发生率的SIS模型无病平衡点的存在性和Hopf分叉点。Xue Z L(2009)8讨论了应急资源有限情况下,SIS模型无病平衡点的稳定性和Hopf分岔点。72.2 存在免疫抗体情况下的传染病模型Kermack和McKendrick(1926)9为了研究1665-1666年黑死病在伦敦的流行规律以及1906年
3、瘟疫在孟买的流行规律,他们把人口分为易感者、染病者和恢复者三大类,利用动力学方法建立了著名的SIR仓室模型。Zhou J(1994-1995)10-12,Zhang Juan等(2004)11,Gao L Q等(1992)13,LI JIANQUAN等(2004)14在SIR模型的基础上考虑不同的感染方式,对病人的隔离,因接种而获得的免疫力以及免疫力的逐渐丧失,是否可以忽略因病死亡率,种群自身增长规律,不同种群之间的交叉感染等因素,构成了丰富多彩的传染病动力学模型。HWHethcote等(2004-2005)15-16对模型的理论研究主要集中在疾病的持续生存及平衡位置特别是导致地方病平衡点的平
4、衡位置和周期解的存在性和稳定性,再生数及分支点的寻找等动力学性态。8BUSENBERG S,WANDEN DRIESSCHE P(1990)17研究了免疫力的逐渐丧失的问题。该文研究了具有标准传染率,种群指数增长的SIRS模型,利用了稳定性理论得到了各类平衡点的全局稳定性。Hethcote,Mena-Lorca(1992)18分别研究了具有常数输入且具有指数出生和死亡,传染率分别是双线性的,标准的和饱和传染率的五类SIRS模型。李健全等(2004)19研究了具有常数输入和Logistic出生的一般形式接触率的SIR模型,利用极限方程理论和构造了Liapunov函数得到了各类平衡点的全局稳定性。
5、陈军杰(2004)20研究了一类具有常数迁入且总人口变化的SIRI模型,利用RouthHurwitz判别法和构造Liapunov函数得到了地方病平衡点的局部稳定性和无病平衡点的全局稳定性,并考虑传染率分别是双线性和标准时,通过构造Liapunov函数得到了地方病平衡点的全局稳定性。92.3.疾病有潜伏期的传染病模型的发展Michael Y Li,Muldowney(1995)21研究了具有非线性传染率的SEIR模型,构造Liapunov函数及利用复合矩阵理论证明了各类平衡点的全局稳定性。Michael Y Li(1999)22研究了具有指数出生、死亡和标准的传染率SEIR模型,通过构造Liap
6、unov函数及利用复合矩阵理论证明了各类平衡点的全局稳定性。Fan MengWang Ke(2001)23研究了具有常数输入和双线性的传染率SEIS模型,也用类似的方法证明了各类平衡点的全局稳定性。MICHAEL Y LI(2001)24认为潜伏者和染病者所生婴儿都会携带病毒但不会立即发病,建立了具常数输入、双线性传染率且潜伏者和染病者有不同程度的垂直传染力的SEIR模型,给出了所建模型的全局动力学性态。10刘烁等(2007)25研究了一类带有非线性传染率的SEIR传染病模型,通过构造Liapunov函数得到了无病平衡点和地方病平衡点的全局稳定性。刚毅(2009)26根据流行病不同阶段的特征,
7、建立了易感者类具有常数输入的SEIR和SEIS组合传染病模型,然后采用Liapunov函数 和复合矩阵理论证明了具有常数输入的SEIR和SEIS组合传染病模型的平衡点的全局渐近稳定性.11对于有些疾病在流行期间,它不仅在染病期传染,而且在潜伏期也传染,也就是说:一个易感者一旦被感染上病毒,在未发病之前(即潜伏期)就对外具有传染性。原三领等(2001)27研究了具有双线性传染率且潜伏期也具有传染力,但不考虑因病死亡的传染病模型,利用Routh-Hurwitz判别法和构造Liapunov函数得到了地方病平衡点的局部稳定性和无病平衡点的全局稳定性。徐文雄等(2004)28研究了具有饱和接触率且潜伏期
8、也具有传染力,并考虑因病死亡的传染病模型,利用RouthHurwitz判别法和构造Liapunov函数得到了地方病平衡点的局部稳定性和无病平衡点的全局稳定性。12张彤等(2006)29研究了具有非线性接触率潜伏期也具有传染力的传染病模型,利用RouthHurwitz判别法和构造Liapunov函数得到了地方病平衡点的局部稳定性和无病平衡点的全局稳定性,以及随着参数的变化,模型会发生Hopf分支,流行病会出现稳定的周期振荡现象.Hethcote(1994-2000)30-31对传染病系统研究目前已取得许多成果进行了系统的总结,详细阐述了传染病的建模思想。131 郑丽丽,王豪,方勤华.一类具有非线
9、性传染率的阶段结构SI模型J.数学的实践与认识,2004,34(8):128-135.2 石磊,俞军,姚洪兴.具有常数迁入率和非线性传染率 的SI模型分析J.高校应用数学学报A辑,2008,23(1),7-12.3 Pei Y Z,Liu S Y,Li C G,Chen L S.The dynamics of an impulsive delay SI model with variable coefficientsJ.Applied Mathematical Modeling,2009,33(6):2766-2776.4 勾清明.一类具有阶段结构和标准发生率的SIS模型J.西南大学学报,20
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 传染病 动力学 研究 资料
限制150内