七年级第五章相交线与平行线复习课教学提纲.ppt
《七年级第五章相交线与平行线复习课教学提纲.ppt》由会员分享,可在线阅读,更多相关《七年级第五章相交线与平行线复习课教学提纲.ppt(57页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、七年级第五章相交线与平七年级第五章相交线与平行线复习课行线复习课知识结构知识结构相相交交线线两条直线相交邻补角、对顶角对顶角相等垂线及其性质点到直线的距离两条直线被第三条直线所截同位角、内错角、同旁内角平平行行线线平行公理平移判定性质相交线1.平面内两条直线的位置关系有:_.相交、平行1.平面内两条直线的位置关系有:_.2.“同一平面内两条直线的位置关系有相交、垂直平行三种.”这句话对吗?为什么?3.相交:当两条直线有公共点时,我们就说这两条直线相交.4.平行:同一平面内,不相交的两条直线互相平行.相交线相交、平行两条直线相交如图,直线AB与CD相交,则1与2互为_;1与3互为_.1.邻补角:
2、有一条公共边,另一边互为反向延长线的两个角,叫做互为邻补角.2.对顶角:一个角的两边分别为另一个角两边的反向延长线,这样的两个角叫做对顶角.3.对顶角的性质:对顶角相等.邻补角对顶角练一练直线直线AB、CD、EF相交于点相交于点O,若,若 AOC=35 ,则,则 AOD=,BOD=.EAOCFBD14535ABCDO在解在解决与角的计算有关决与角的计算有关的问题时,经常用的问题时,经常用到代数方法。到代数方法。垂线、垂线段1.垂线:两条直线相交所成四个角中,如果有一个角是直角,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.2.垂线的性质:过一点有且只有一条直
3、线与已知直线垂直.3.垂线段:垂线段最短.垂线、垂线段4.垂线段的性质:过直线外一点,作已知直线的垂线,这点和垂足之间的线段叫做垂线段.直线外一点与直线上所有各点的连线中,垂线段最短。5.点到直线的距离:直线外一点到这条直线的垂线段的长度.叫做这点到这条直线的距离。拓 展 应 用 如图:要把水渠中的水引到水池如图:要把水渠中的水引到水池C中,在渠岸的什么地方开沟,水沟中,在渠岸的什么地方开沟,水沟的长度才能最短?的长度才能最短?请画出图来,并说明理由。请画出图来,并说明理由。C理由理由:垂线段最短垂线段最短练一练已知P是直线l外一点,A、B、C是直线l上一点,且PA=5,PB=3,PC=2,那
4、么点P到直线l的距离为()A.等于2 B.大于2C.小于或等于2D.小于2C练一练图中能表示点到直线的距离的线段有()A 2条B 3条C 4条D 5条D练一练分别过点分别过点A、B、C画对边画对边BC、AC、AB的的垂线,垂足分别为垂线,垂足分别为D、E、F.BACDEF三线八角如图,图中的同位角有:内错角有:同旁内角有:1与5,2与6,3与7,4与83与5,4与63与6,4与5练一练如图,1与2是_和_被_所截形成的_角?3与4是_和_被_所截形成的_角?ADBCAC内错ABCDAC内错练一练如图,1与2是_和_被_所截形成的_角?3与4是_和_被_所截形成的_角?ADBCCD同旁内ABCD
5、BE同位平行线1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果ba,ca,那么_.bc平平行行线线的的性性质质平平行行线线的的判判定定两直线平行两直线平行条件条件结论结论同位角相等同位角相等内错角相等内错角相等同旁内角互补同旁内角互补条件条件同位角相等同位角相等内错角相等内错角相等同旁内角互补同旁内角互补结论结论两直线平行两直线平行夹夹在在两两平平行行线线间间的的垂垂线线段段的的长长度度,叫叫做做两两平平行行线线间间的的距距离离。ABCDEF123456如图:如图:填空,并注明理由。填空,并注明
6、理由。(1)、)、1=2 (已知)(已知)()3=4 (已知)(已知)()5=6(已知)(已知)()5+AFE=180(已知)(已知)()AB FC,ED FC(已知)(已知)()ABED内错角相等。两内错角相等。两直线平行,直线平行,AFBE同位角相等,两直线平行。同位角相等,两直线平行。BCEF 内错角相等,两直线平行。内错角相等,两直线平行。AFBE同旁内角互补,两直线平行。同旁内角互补,两直线平行。ABED平行于同直线的两条直线互相平行。平行于同直线的两条直线互相平行。平行线的判定应用练习:平行线的判定应用练习:例例2.已知已知DAC=DAC=ACB,ACB,D+D+DFE=180DF
7、E=1800,求证求证求证求证:EF/BC:EF/BC 证明证明:DAC=DAC=ACB ACB(已知已知)AD/BCAD/BC (内错角相等内错角相等内错角相等内错角相等,两直线平行两直线平行两直线平行两直线平行)D+D+DFE=180DFE=1800(已知已知)AD/EFAD/EF (同旁内角互补同旁内角互补同旁内角互补同旁内角互补,两直线平行两直线平行两直线平行两直线平行)EF/BCEF/BC (平行于同一条直线的两条直线互相平行平行于同一条直线的两条直线互相平行平行于同一条直线的两条直线互相平行平行于同一条直线的两条直线互相平行)ABCDEF例例1.如图如图 已知:已知:1+2=180
8、,求证:求证:AB CD。证明:由:证明:由:1+2=1801+2=180(已知已知),1=31=3(对顶角相等)(对顶角相等).2=4 2=4(对顶角相等(对顶角相等)根据:根据:等量代换等量代换得:得:3+4=180.3+4=180.根据:根据:同旁内角互补,两直线平行同旁内角互补,两直线平行 得:得:AB/CDAB/CD.4123例2.如图,已知:已知:AC DE,1=2,试证明,试证明AB CD。证明:证明:由由AC DE(已知)(已知)ACD=2 (两直线平行,内错角相等两直线平行,内错角相等)1=2(已知)(已知)1=ACD(等量代换等量代换)AB CD (内错角相等,两直线平行内
9、错角相等,两直线平行)ADBE12C例例3.已知已知 EF AB,CD AB,EFB=GDC,求证:求证:AGD=ACB。证明:证明:EF AB,CD AB(已知)(已知)AD BC (垂直于同一条直线的两条直线互相平行垂直于同一条直线的两条直线互相平行)EFB DCB (两直线平行,同位角相等)(两直线平行,同位角相等)EFB=GDC(已知)(已知)DCB=GDC(等量代换)(等量代换)DG BC(内错角相等(内错角相等,两直线平行)两直线平行)AGD=ACB (两直线平行,同位角相等)(两直线平行,同位角相等)练一练如图,已知直线ab,1=54,那么2,3,4各是多少度?解:1=54 2=
10、1=54(对顶角相等)ab 4=1=54(两直线平行,同位角相等)3=1802 =180 54=126(两直线平行,同旁内角互补)命题、定理1.命题:判断一件事情的语句,叫做命题.2.题设、结论:将命题写成“如果那么”的形式,“如果”后面的是题设,“那么”后面的是结论.命题、定理3.真命题、假命题:若题设成立,则结论也一定成立的命题,是真命题.若题设成立,则结论不一定成立的命题,是假命题.4.定理:有些命题的正确性是经过推理证实的,这样得到的真命题叫做定理.例例1.判断下列语句,是不是命题,如果是命题,是真命题,判断下列语句,是不是命题,如果是命题,是真命题,还是假命题还是假命题?(1)画线段
11、AB=2cm(2)直角都相等;(3)两条直线相交,有几个交点?(4)如果两个角不相等,那么这两个角不是对顶角。(5)相等的角都是直角;分析分析:因为因为(1)、(3)不是对某一件事作出判断的句子,所以不是对某一件事作出判断的句子,所以(1)、(3)不是命题。不是命题。解解.(1)、(3)不是命题不是命题;(2)、(4)、(5)是命题是命题;(2)、(4)都是真都是真命,命,(5)是假命题。是假命题。练习练习1 1、下列命题是真命题的有(、下列命题是真命题的有()A A、相等的角是对顶角、相等的角是对顶角 B B、不是对顶角的角不相等、不是对顶角的角不相等C C、对顶角必相等、对顶角必相等 D
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 第五 相交 平行线 复习 教学 提纲
限制150内