【数学】2.1.2《离散型随机变量的分布列(二)》课件(新人教A版选修2-3)复习进程.ppt
《【数学】2.1.2《离散型随机变量的分布列(二)》课件(新人教A版选修2-3)复习进程.ppt》由会员分享,可在线阅读,更多相关《【数学】2.1.2《离散型随机变量的分布列(二)》课件(新人教A版选修2-3)复习进程.ppt(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【数学】【数学】2.1.22.1.2离散型离散型随机变量的分布列随机变量的分布列(二二)课件课件(新人教新人教A A版选修版选修2-3)2-3)回顾复习回顾复习 如果随机试验的如果随机试验的结果结果可以用可以用一个变量一个变量来表示,那么来表示,那么这样的变量叫做这样的变量叫做随机变量随机变量1.1.随机变量随机变量 对于随机变量可能取的对于随机变量可能取的值值,我们可以按一定次序,我们可以按一定次序一一列出一一列出,这样的随机变量叫做,这样的随机变量叫做离散型随机变量离散型随机变量2.2.离散型随机变量离散型随机变量3 3、离散型随机变量的分布列的性质:、离散型随机变量的分布列的性质:例1:
2、已知随机变量的分布列如下:已知随机变量的分布列如下:213210分别求出随机变量分别求出随机变量;的分布列的分布列解:解:且相应取值的概率没有变化且相应取值的概率没有变化的分布列为:的分布列为:110由由可得可得的取值为的取值为 、0、1、例1:已知随机变量的分布列如下:已知随机变量的分布列如下:213210分别求出随机变量分别求出随机变量;的分布列的分布列解:解:的分布列为:的分布列为:由由可得可得的取值为的取值为0、1、4、90941例例 2、在掷一枚图钉的随机试验中在掷一枚图钉的随机试验中,令令如果会尖向上的概率为如果会尖向上的概率为p,试写出随机变量试写出随机变量X的分布列的分布列解解
3、:根据分布列的性质根据分布列的性质,针尖向下的概率是针尖向下的概率是(1p),于是,于是,随机变量随机变量X的分布列是:的分布列是:X01P1pp1、两点分布列、两点分布列象上面这样的分布列称为象上面这样的分布列称为两点分布列两点分布列。如果随机变量。如果随机变量X的分的分布列为两点分布列,就称布列为两点分布列,就称X服从服从两点分布两点分布,而称,而称p=P(X=1)为为成功概率成功概率。练习:练习:1、在射击的随机试验中,令、在射击的随机试验中,令X=如如果射中的概率为果射中的概率为0.8,求随机变量,求随机变量X的分布列。的分布列。0,射中,射中,1,未射中,未射中2、设某项试验的成功率
4、是失败率的、设某项试验的成功率是失败率的2倍,用随机倍,用随机变量变量 去描述去描述1次试验的成功次数,则失败率次试验的成功次数,则失败率p等等于(于()A.0 B.C.D.C例例3 3:在含有在含有5件次品的件次品的100件产品中,任取件产品中,任取3件,试求:件,试求:(1)取到的次品数)取到的次品数X的分布列;的分布列;(2)至少取到)至少取到1件次品的概率件次品的概率.解:(解:(1)从)从100件产品中任取件产品中任取3件结果数为件结果数为从从100件产品中任取件产品中任取3件,其中恰有件,其中恰有K件次品的结果为件次品的结果为 那么从那么从100件产品中任取件产品中任取3件,件,其
5、中恰其中恰好有好有K件次品的概率为件次品的概率为X0123P 一般地,在含有一般地,在含有M件次品的件次品的N件产品中,任取件产品中,任取n件,其中恰有件,其中恰有X件次品数,则事件件次品数,则事件X=k发生的概发生的概率为率为2、超几何分布、超几何分布X01mP称分布列为称分布列为超几何分布超几何分布例例4 4:在某年级的联欢会上设计了一个摸奖游戏,在在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有一个口袋中装有10个红球和个个红球和个20白球,这些球除颜白球,这些球除颜色外完全相同。一次从中摸出色外完全相同。一次从中摸出5个球,至少摸到个球,至少摸到3个个红球就中奖。求中奖的概率。红
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 离散型随机变量的分布列二 2.1 离散 随机变量 分布 课件 新人 选修 复习 进程
限制150内