《平面与平面垂直的性质》教学提纲.ppt
《《平面与平面垂直的性质》教学提纲.ppt》由会员分享,可在线阅读,更多相关《《平面与平面垂直的性质》教学提纲.ppt(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、平面与平面垂直的性质平面与平面垂直的性质1、平面与平面垂直的、平面与平面垂直的定义定义2、平面与平面垂直的、平面与平面垂直的判定定理判定定理一个平面过另一个平面的垂一个平面过另一个平面的垂线,则这两个平面垂直。线,则这两个平面垂直。符号表示:符号表示:b两个平面相交,如果它们所成的二面角是两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。直二面角,就说这两个平面互相垂直。提出问题:提出问题:该命题正确吗?该命题正确吗?.观察实验观察实验观察两垂直平面中,一个平面内的直线与另一个平面的有哪些位置关系?.概括结论概括结论平面与平面垂直的性质定理平面与平面垂直的性质定理b两个平面
2、垂直两个平面垂直,则一个平面则一个平面内垂直于交线的直线与另一内垂直于交线的直线与另一个平面垂直个平面垂直.简述为:简述为:面面垂直面面垂直线面垂直线面垂直该命题正确吗?该命题正确吗?符号表示:符号表示:.知识应用知识应用练习练习1 1:判断正误。:判断正误。已知已知平面平面平面平面,l l下列命题下列命题(2)(2)垂直于交线垂直于交线l l的直线必垂直于平面的直线必垂直于平面 ()(3)(3)过平面过平面内任意一点作交线的垂线,则此内任意一点作交线的垂线,则此垂线必垂直于平面垂线必垂直于平面()(1)(1)平面平面内的任意一条直线必垂直于平面内的任意一条直线必垂直于平面()例例1 1:如图
3、,:如图,ABAB是是OO的直径,的直径,C C是圆周上不同是圆周上不同于于A A,B B的任意一点,平面的任意一点,平面PACPAC平面平面ABCABC,BOPAC(2)(2)判断平面判断平面PBCPBC与平面与平面PACPAC的位置关系。的位置关系。(1)(1)判断判断BCBC与平面与平面PACPAC的位置关系,并证明。的位置关系,并证明。(1)证明:证明:AB是是 O的直径,的直径,C是圆周上不同于是圆周上不同于A,B的任的任意一点意一点 ACB=90BCAC 又又平面平面PAC平面平面ABC,平,平面面PAC平面平面ABCAC,BC 平面平面ABC BC平面平面PAC(2)又又 BC
4、平面平面PBC,平面平面PBC平面平面PAC 解题反思解题反思2、本题充分地体现了面面垂直与 线面垂直之间的相互转化关系。1、面面垂直的性质定理给我们提供了一种证明线面垂直的方法面面垂直面面垂直线面垂直线面垂直性质定理性质定理判定定理判定定理例例 垂直于同一平面的两平面的交线垂直于这个平面。垂直于同一平面的两平面的交线垂直于这个平面。已知:已知:,,=,求证:求证:a.证法一:证法一:abcPMN设设 =b,=c,在在 内任取一点内任取一点P,作作PM b于于M,PN C于于N.因为因为 ,所以所以 PM ,PN .因为因为 =a,所以所以 PM a,PN a,所以所以 a.线线垂直线线垂直线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面与平面垂直的性质 平面 垂直 性质 教学 提纲
限制150内